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Chapter 1

Introduction

Welcome to the MAVERIK Programmer’s Guide (MPG), which describes version 6.2 of GNU
MAVERIK – the MAnchester Virtual EnviRonment Interface Kernel. In this manual we’ll discuss
the ideas behind MAVERIK, its architecture, the facilities it provides to application programmers, and
also why we think it’s novel and interesting. For complete documentation of the functions and types
that make up the MAVERIK API, please refer the MAVERIK Functional Specification (MFS) [3]
which is included in the MAVERIK distribution as postscript, pdf, HTML, and as on-line man pages.
Generally, when a function is first mentioned in this manual, we cross-reference its main entry in the
MFS.

Please also refer to the MAVERIK Frequently Asked Questions (FAQ) file, in the top-level directory
of the MAVERIK distribution. For your convenience the FAQ is also listed in Appendix E (page 175),
but the on-line version (http://aig.cs.man.ac.uk/maverik/faq.php) is likely to be more up-to-
date.

1.1 What is MAVERIK?

In its simplest form, MAVERIK is a C toolkit for managing display and interaction in stand-alone (that
is, non-networked) single-user Virtual Environment applications. A complementary system under
development, Deva [18, 21, 22, 8], provides a networked multi-user, multi-environment layer on top
of MAVERIK, with the ability to efficiently specify behaviour, laws etc. As of release 4.3, MAVERIK

is an official component of the Free Software Foundation’s GNU Project located in Boston, USA
(http://www.gnu.org). However, as the copyright holders of the original MAVERIK source we are
able to distribute non-GPL’d versions of (our version of) MAVERIK under a commercial license. See
http://aig.cs.man.ac.uk/maverik/non-gpl.php for more details.

There are numerous other “VR toolkits” available, ranging from very low-level libraries of functions
for drawing three-dimensional graphics and interacting with peripherals, to fully-blown “systems”
that describe virtual environments in much higher level terms. MAVERIK lies somewhere in between
these extremes. It provides an application with the tools needed to create, manage, view, interact with,

3



4 CHAPTER 1. INTRODUCTION

and navigate around graphically complex Virtual Environments while making the minimum number
of assumptions about the nature of the application.

MAVERIK does not dictate the use of any fixed object/scene representations or viewing/interaction
techniques. Rather, it has the ability, where needed, to directly link into and exploit an application’s
own data structures and algorithms. This novel aspect of MAVERIK allows it to easily take advan-
tage of representations, optimisations, and techniques that are highly application specific giving the
resulting virtual environment a behaviour which is customized to, and consistent with, the nature of
the application.

MAVERIK’s flexible design means that applications with widely differing requirements can be sup-
ported.

MAVERIK has two components:

� a micro-kernel, which provides the framework within which applications are built;

� a collection of supporting modules, which provide optimised display management, culling,
spatial management, interaction and navigation techniques, control of input and output devices
etc. These modules are distributed as source code and act as a basis for customization.

It is important to appreciate that MAVERIK is not an “end-user application”: there are no graphical
user interfaces or “world editors” – it is strictly a programming tool.

A more detailed description of MAVERIK’s architecture and design philosophy is given in the next
chapter.

1.2 What platforms does MAVERIK support?

MAVERIK is available as source code and should compile under Windows, MacOS and on UNIX
systems – essentially any system that has OpenGL, Mesa (version 3.1 or above), IrisGL or DirectX
(version 7). However, while it is possible to use any of these libraries, OpenGL/Mesa is currently the
best supported library for MAVERIK to use.

MAVERIK is known to run on the following operating systems:

� SGI Irix 5.3, 6.3 and 6.5;

� RedHat 5.2 and 6.x;

� FreeBSD 3.2;

� SuSE 7.1;

� SunOS 5.7;
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� Windows 98, 2k and NT;

� MacOS;

This list is not intended to be exhaustive but simply reflects operating systems that we, or others, have
access to and tried MAVERIK with. Ports to other UNIX platforms should be fairly trivial and we
believe the code to work on Window 95.

Since MAVERIK uses well supported graphics libraries to perform rendering (OpenGL, IrisGL or
DirectX) it can take advantage of the hardware acceleration available on certain graphics cards. For
example, as well as our SGI’s, we use MAVERIK on PCs, running GNU/Linux which are equipped
with GeForce3 graphics cards (we also use a machine fitted with two Voodoo2 cards in order to
produce stereo output).

1.3 What peripherals does MAVERIK support?

A standard compilation of MAVERIK provides supports for a desktop mouse, keyboard and screen.
This makes it easy to try out the examples and demonstrations.

The configuration of 3D peripherals used in VR labs tends to be site specific. Code is included in
the distribution to support Polhemus FASTRAK and ISOTRAK II six degree of freedom trackers (op-
tionally coupled to Division 3D mice); Ascension Flock of birds (ERC only); Spacetec SpaceBalls
and SpaceOrb360s; Magellan Space Mouse; InterSense InterTrax 30 gyroscopic trackers; 5DT data
gloves; and a serial Logitech Marble Mouse. With modification other similar specification 6 DOF
input devices/tracking technology can be supported. Code to support IBM’s ViaVoice speech recog-
nition engine is also provided. This code is not compiled by default since it is not relevant to everyone
and requires some manual configuration. See the README in the src/extras sub-directory of the
MAVERIK distribution for more information.

We have also supported more peculiar peripherals in our own lab: Microsoft SideWinder Force-
Feedback joystick and our homebuilt MIDI server. These are relatively uncommon devices and so are
not included in a “standard” MAVERIK release. If you’re interested in this code, please contact us.

1.4 What has MAVERIK been used for so far?

The development of MAVERIK began in 1997, since when it has been used for many different projects
and applications, including:

� research into the improvement of interfaces to complex engineering tasks, such as the design
and operation of off-shore drilling platforms [13, 12, 24, 4, 10];

� large-scale electronic landscapes for way-finding and public information access [19, 14, 23, 20];
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� stereoscopic modelling of scenes of crime [9, 15];

� abstract data visualisation [17, 16];

� visualisation of physically based simulations [7, 5, 6];

� electronic artworks [2];

� tools for interactively creating and editing virtual environments;

� modelling nanotechnology;

� architectural modelling.

You can find details of these and other projects at the Advanced Interfaces Group’s MAVERIK appli-
cations Web page – http://aig.cs.man.ac.uk/gallery/index.php.

1.5 MAVERIK levels

The MAVERIK API comprises over 550 functions, only a small subset of which will commonly be
used by programmers wishing to use MAVERIK “out of the box”. Similarly, many functions will be
of interest only to those users wishing to understand the internal workings of MAVERIK, and possibly
wishing to tailor it to their own requirements.

With these various requirements in mind, we have divided the MAVERIK functionality into three
“levels”, which we hope will help users to find their way around. This three-level structure is reflected
both in this manual, and in the MAVERIK Functional Specification.

� Level 1 functions are those which first-time users of MAVERIK will normally use. These func-
tions make use of the many defaults built into MAVERIK, and should enable users to create
interesting MAVERIK applications quickly.

� Level 2 functions are those which allow more advanced use of MAVERIK. Examples might
include defining new classes of object, or defining new methods of navigating around the virtual
environment.

� Level 3 functions are intended for “Research and Development” using MAVERIK. They are
low-level functions which provide interfaces to the MAVERIK kernel and associated modules.
For example, Level 3 functions would be required for extending MAVERIK to provide new
level-of-detail processing algorithms, new object culling algorithms, or to provide support for
new kinds of input devices.

1.6 Assumed readers’ background

Because MAVERIK is a research and development system, we assume that the reader is already famil-
iar with the basic concepts of computer graphics and virtual environments. In particular, we assume
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that the reader is comfortable with the ideas of modelling coordinates and world coordinates; trans-
formations; rendering in the OpenGL style; callback functions; and the object-oriented programming
ideas of classes and methods.

1.7 Contact

Comments, questions and feedback are actively encouraged and should be addressed to us personally
at maverik@aig.cs.man.ac.uk, or to the MAVERIK user’s mailing list (details of which can be
found at http://aig.cs.man.ac.uk/contact.php). Bugs should be reported to the mailing list,
or to bug-maverik@aig.cs.man.ac.uk, but only after you have consulted the FAQ and list of known
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Chapter 2

MAVERIK’s architecture and design

This chapter briefly describes the architecture and design principles behind MAVERIK. For a more
detailed description please see [11].

MAVERIK was designed to be a Virtual Reality system which addresses two key concerns: easy
customisation to meet the demands of different applications, and efficient operation so that very
large environments can be handled. Our approach adopts a “micro-kernel” design which minimises
assumptions about how environments are represented and stored by the system.

MAVERIK is one of two components in a complete VR “operating system” under development within
the Advanced Interfaces Group. We refer to MAVERIK as a micro-kernel because it provides a core set
of functions for implementing VR interfaces on behalf of a single user. The second component, called
Deva, provides a higher-level operating environment supporting multiple users, distributed shared
environments, and multiple persistent concurrent environments. We do not discuss Deva further in
this manual; for details please see [18, 8].

This chapter presents a description of the MAVERIK micro-kernel, its features and architecture, and
how it compares to other VR software systems.

2.1 Virtual environment representations

One defining characteristic of a VR system is the way in which representations of virtual environments
are stored and manipulated internally. In this section we contrast two common approaches: fixed
representations and immediate-mode rendering.

2.1.1 Fixed representations

Most VR systems use a fixed representation for the virtual environment. This is shown in the figure
below:

9
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Application
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VR system’s
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data

VR systemApplication

Data import

Here, an application’s data is imported into a separate VR system, which stores it internally in some
fixed format optimised for its own use. Often this will be a polygonal representation of the geometry
of the model in a format dictated by the underlying graphics system.

This approach works well if the required VE has limited possibilities for interaction, such as a simple
walk-through, or interaction with only a small number of objects. The advantage of the approach
is that a large number of “standard” capabilities suited to the chosen representation – for example,
culling and interaction mechanisms – can be provided as part of the VR system’s intrinsic design and
implementation.

However, as the complexity of an environment increases, and the requirement arises to associate ap-
propriate behaviours and affordances with objects, the “fixed representation” approach become prob-
lematic. The data required to achieve such behaviour will always be application specific – since only
the application can “know” what an object actually is, and what it means in the VE. Finding sensible
mappings between a semantically rich application database and the restricted graphics-oriented data
structure of the VR system is usually difficult and often unsatisfactory. Furthermore, it is often very
difficult to exploit this information to affect the behaviour of the core VR system’s functionality – for
example, its culling, level-of-detail and navigation routines – since the user has little or no access to
these.

Choosing a common representation, suitable for widely differing applications, is a difficult task, in-
evitably involving a trade-off between conflicting interests. For example, the needs of an application
involved in design work for the motor industry are clearly quite different from those involved in ab-
stract data visualization. A consequence of application diversity is that with a fixed representation, it
is difficult to create a truly general-purpose VR system which can exploit application semantics.

The “fixed representation” scheme has another drawback: it requires that the two separate represen-
tations of the same underlying data must be maintained, one for the application and one for the VR
system. It is a non-trivial programming task to keep separate representations synchronized.

2.1.2 Immediate-mode rendering

An alternative to storing graphical data in a separate fixed data structure as described above is to use
immediate-mode rendering. Here, pictures are generated algorithmically, directly from an applica-
tion’s data, by writing a program in a language such as C. Calls to functions in a graphics library,
such as OpenGL, embedded within the application, send data directly to the graphics hardware for
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immediate rendering.

The big advantage of this approach is its ability to directly use arbitrary application data structures
and also to exploit the application’s algorithms to give the VE meaningful behaviour. The disadvan-
tage is that since no standard representation is used, the graphics library cannot provide higher level
functionality, such as culling and navigation.

2.2 The MAVERIK system

Like OpenGL, MAVERIK can be thought of as a graphics library which links into an application and
directly uses its data structures and algorithms.

The crucial difference is that it also defines a standardized framework in which an application provides
MAVERIK with the means to access its objects. Through the use of this framework, MAVERIK can
provide high level functionality without dictating the use of any specific object representation.

MAVERIK has an object-oriented structure. It defines a set of classes for different kinds of object, and
mechanisms for defining new classes. Customisation for different applications is achieved by defining
methods associated with each class.

MAVERIK is implemented in standard C, so that it can be ported easily to different platforms and
can be used by anyone with basic C programming skills. Methods are implemented using callback
functions, with data passed via generic “typeless” pointer parameters. Note, however, that class
hierarchies and inheritance are not supported.

2.2.1 Object definition

An “object” is simply a convenient way of naming something which an application requires MAVERIK

to treat as an entity. No assumptions are made about how an object is represented by the application.
For example, an object might be a single polygon, a group of polygons defining some more complex
shape, such as a desk or chair, or some group of more complex primitive shapes which are specific to
that one application – such as a ladder, or a valve.

The way to define different kinds of objects is to create a class for each one. This is done by calling a
function, which returns a unique identifier for the new class. Different classes each have a (possibly
unique) set of methods, implemented as C functions accessed as callbacks. Methods govern operations
such as displaying primitives, computing their bounding boxes, or finding objects which are spatially
closest to a given point. MAVERIK arranges that these methods are called to render frames. Methods
which are specific to a particular application can also be defined, such as computing the mass of an
object, or finding its centre of mass. Generally speaking, the minimum set of methods necessary
to create a simple interactive VE comprises those for displaying objects, for computing a bounding
volume, and for selecting/manipulating them (usually by ‘grasping’ or pointing at them in some way).

To avoid the tedium of having to write callback functions every time a new application is implemented,
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MAVERIK provides default methods for a few common primitives such as polygons, polygon meshes,
spheres, cylinders, cones, tori, boxes, and sub-parts of these (such as an angular section of a cylinder
or torus). These default methods are distributed as source code, providing a set of examples and
facilitating customisation.

As well as defining classes and associated methods, individual objects to be managed by MAVERIK

must be registered. This is performed by a function which takes as input an object’s class and a
pointer to the data defining that object. This function binds these two elements into a single MAVERIK

object, whose identifier is returned for use in subsequent references. In this way, objects are stored so
that MAVERIK can find the class of any registered object – and hence any associated methods – and
can also pass to the callback functions the generic pointer to the application data. Callback functions
perform a cast into a pointer of the correct type for the data. The figure below illustrates the MAVERIK

framework for objects, classes and methods:
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The application’s data structures are shown (as hexagons) to the left of the vertical line. The appli-
cation’s methods, which act upon the objects, are drawn as triangles. The shading illustrates which
algorithms operate on which data structures (black on black, white on white).

The framework by which MAVERIK can access the application is shown on the right of the vertical



2.2. THE MAVERIK SYSTEM 13

line. Each MAVERIK class contains a number of callback functions to process each class of object.
The MAVERIK objects are the encapsulation of the appropriate class and the application-specific data
structures which define the object.

Because MAVERIK objects only maintain pointers to – not copies of – the data structure and class,
they do not have to be notified of any changes to them.

Although not shown in the Figure, MAVERIK uses a similar callback mechanism for registering event
handlers and navigation functions.

The standard distribution of MAVERIK contains libraries of default methods for displaying and man-
aging many common types of graphical primitives, and for navigation around the virtual environment.
These can be customised easily by adding extra data and code, or simply replaced by alternative
versions which are intimately bound to the data structures used by the application.

2.2.2 Spatial management structures

Another important feature of a VR system is its support for spatial management – this is central
to many algorithms and techniques, such as culling, object selection, and collision detection, and is
essential for managing large models. A common approach is to use a hierarchy of bounding volumes
for spatial searching, which generally works efficiently because of its logarithmic complexity. How-
ever, as with object storage, it is possible to find optimisations which capitalise on application-specific
features to yield superior performance.

MAVERIK provides a framework which permits customisation of spatial management methods. In a
manner analogous to object definition, MAVERIK uses classes and methods to store and access spatial
data. An application defines a class for each object storage technique, registers the callback func-
tions corresponding to the different methods for each class, and defines generic object management
structures – called spatial management structures (SMSs) – to store and manage MAVERIK objects.

Typical methods associated with SMSs include object insertion, object deletion and cull to a region
of space. However, as with objects, an application can define whatever new classes and associated
methods are most appropriate. An example of application-specific SMS processing might be to en-
force a minimum spatial separation between objects.

As with objects, default methods are supplied which implement a range of useful techniques. One
default class of SMS stores objects as a simple linked list, and processes them (for example, for
display) in the order in which they were inserted, but only if an object’s bounding box lies inside
the current view frustum. Another class of SMS implements a hierarchy of bounding volumes. Any
application-specific object that provides the “calculate bounding box” method can be used with these
spatial management structures.

Although SMSs, as their name implies, are generally used for spatial management, objects can be
stored in a non-spatial manner. For example, a linear list which maintains objects in insertion order
is usually non-spatial. Such a list can be re-ordered to optimise graphics hardware context changes
during display. Alternatively, objects could be sorted on a particular application-specific data field in
order to accelerate processing of other kinds of queries.
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Multiple SMSs

Objects can be inserted in any number of SMS’s and processing can be performed on the SMS most
suited to a particular task. One case where a simple linear list is useful is object manipulation. Sup-
pose that a hierarchy of bounding volumes (HBV) is the default SMS for a large-scale model. Objects
to be manipulated can be temporarily removed from the HBV SMS and inserted into a simple linked
list for the duration of the manipulation. Subsequently, they can be reinserted into the HBV structure.
The advantage of this is that potentially expensive alterations to the HBV structure are not needed
during dynamic changes to the model. Because MAVERIK can manage several SMS structures simul-
taneously, the programming effort required to manage this is small.

A second example of multiple SMSs is to use one for view frustum culling and a second for object
display. The first structure is used to flag visible objects and is organised for efficient spatial searching.
A good choice for this would be an HBV. Objects referenced in the HBV are actually stored in the
second SMS, which is ordered to minimise graphics context switches. This second SMS is then
traversed displaying only the flagged visible objects.

Data consistency is maintained because all SMSs store references to MAVERIK objects, which in turn
contain references to the application-specific objects. MAVERIK maintains, for each object, a list of
the SMSs into which it has been inserted, and automatically removes it from each SMS if the object
is deleted.

2.3 Summary

The design approach we have adopted for MAVERIK has three advantages:

� First, none of the application data is imported into, or replicated within, MAVERIK. This avoids
the problem of synchronising changes to multiple representations.

� Second, the framework encapsulates all the information needed by MAVERIK to access data
and methods stored externally within the application, so that object classes can be reused easily
in other applications.

� Third, the philosophy is simple to understand and use, and straightforward to link to existing
applications. This last point is important in domains such as CAD, where there is a major legacy
problem with large-scale databases and existing code.

It might be argued that other VR systems can be tailored in much the same way. For us, the issue
is the ease with which alternative behaviours can be implemented. The callback mechanism is a fa-
miliar programming technique, popularised by windowing systems such as X Windows, and graphics
systems such as OpenGL. In MAVERIK a simpler parameter-passing mechanism has been adopted
than that in X. Our design provides a clean interface which enables customisation to be configured
dynamically at run-time. Callbacks can be switched (re-registered) to change the dynamic behaviour
of the system.
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For example, suppose that an environment comprises a city populated by buildings which the user is
permitted to enter and move around. The insides of the buildings and the city outside may be opti-
mised to use completely different spatial management methods for culling, navigation and interaction.
Specifically, we use an occlusion culling algorithm for displaying the city, and a cell and portal method
for the interior of the buildings. In MAVERIK, we can treat the objects representing the exterior of
the buildings as belonging to a different class from those on the insides, and we register appropriate
methods for each. However, the method employed by the user for moving around may need to be
changed dynamically at run-time. Thus, the methods for a user walking around the streets or inside a
building will be quite different from one driving a virtual car – the constraints and affordances in each
case will be quite different. The navigation methods can be re-registered as the user enters or leaves
buildings, or climbs into the car.

The remainder of this manual describes MAVERIK from a programmer’s point of view. In the next
chapter we present an introduction to programming with MAVERIK, using a series of worked example
programs, all of which are available in the MAVERIK distribution.
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Part II

MAVERIK Programming Level 1
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Chapter 3

Introduction to MAVERIK programming

In this chapter we introduce some of the fundamental MAVERIK concepts in enough detail to allow
you to write simple applications.

We’ll present and work through a set of example programs, each of which builds on the previous
example, as follows:

� Example 1: a minimal MAVERIK application;

� Example 2: defining and displaying an object;

� Example 3: surface parameters and navigation around the virtual environment;

� Example 4: a more complex environment with multiple objects.

The source code for the example programs in this manual, along with the Makefile to build them,
can be found in the examples/MPG directory of the MAVERIK distribution. If you installed MAVERIK

yourself, you’ll know where this is. If not, ask your friendly system administrator.

We suggest you take copies of the examples, and the Makefile, to familiarise yourself with compiling
and linking with MAVERIK. See Appendix A (page 127) for full details of how to compile and execute
these examples.

3.1 The structure of a MAVERIK application

Broadly speaking, a MAVERIK application has a simple logical structure, comprising the following
five sections:

� MAVERIK initialisation;

19
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� Define the objects which comprise the virtual environment;

� Define the application’s “behaviour” – how objects are managed, responds to interactions, defin-
ing navigation etc;

� Enter the MAVERIK rendering and interaction loop; once entered, this loop never quits, until
the application does;

� Within each cycle of the loop, react to interaction events, and draw a frame.

3.2 Example 1: A minimal MAVERIK application

Our first example program is about as minimal as it’s possible to get, but we hope it will serve to
illustrate the logical structure outlined above. It will also ensure that you have correctly compiled the
example, have a working version of the MAVERIK library, and that any paths are correctly set.

Try compiling and running eg1.c. You should see a window appear with the MAVERIK welcome
message in it. This message consists of a spiraling MAVERIK logo with various copyright, version
and contact information displayed. By default this message appears at the start of every MAVERIK

application.

When the message clears you should see an empty blue window. The window will sit there forever,
or until you move the mouse focus into the window, and type Shift-Esc on the keyboard. This key
sequence is recognised by all MAVERIK applications and causes them to quit.

Here’s the source code for eg1.c:

/* eg1.c */
#include "maverik.h"

int main(int argc, char *argv[])
{

/* Initialise the Maverik system */
mav_initialise(&argc, argv);

/* Rendering loop */
while (1) {

/* Check for and act on any events */
mav_eventsCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Request end of the frame */
mav_frameEnd();

}
}
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The program begins with an include file. maverik.h is the standard MAVERIK include which must
appear in all MAVERIK programs. It contains all the definitions for MAVERIK constants, typedefs,
and prototypes for the MAVERIK functions.

MAVERIK must be initialised before it can be used. Either one of two functions can be used to
perform this – mav initialise (MFS p 140) or mav initialiseNoArgs (MFS p 140) – and one of
these must be the first MAVERIK function called by the application. The two function are essentially
the same, the difference being the former takes the command line arguments which can be used to
control the initialisation process (see Appendix D (page 171) for a full description of this).

By default initialisation opens a screen window for rendering which will be a quarter of the overall
screen size, and positioned in the lower left quadrant of the screen.

The shape and position of the window created by the initialisation call are examples of a number of
aspects of MAVERIK’s behaviour which are controlled by a set of global variables. These global vari-
ables are named mav opt *, and their default values can be explicitly overwritten by an application.
For example, setting the variables mav opt x, mav opt y, mav opt width and mav opt height prior
to the initialisation call allows an application to customise the position (bottom-left) and size of the
window opened by mav initialise. See Appendix C (page 157) for a complete list of the mav opt *
variables.

Once initialised, MAVERIK is ready for use. In this example, we immediately enter the main rendering
and interaction loop without defining any objects or “behaviour”. The main loop typically has the
following structure:

� The application calls mav eventsCheck (MFS p 130) to check if any interaction events have
occurred (triggered, for example, by the use of a mouse or keyboard). If MAVERIK detects that
any events have occurred, it automatically calls functions to process the events. We’ll describe
how this works in Chapter 4 (page 35). Calling mav eventsCheck also triggers navigation, as
we’ll see in Example 3.

� Next, the application calls mav frameBegin (MFS p 133) to request MAVERIK to start a new
rendering frame. mav frameBegin actually causes quite a few things to happen behind the
scenes, which we’ll discuss later. MAVERIK uses double-buffering by default, so for now, think
of this function as just clearing the back buffer in preparation for rendering a new frame.

� The next step would be to ask MAVERIK to do something useful for us, which would normally
be to request an up-to-date display of all the objects in the virtual environment. We’ll discuss
this in Example 2.

� Finally, we call mav frameEnd (MFS p 135) to inform MAVERIK that the frame is now com-
plete, and ready for display. MAVERIK then swaps the buffers and updates the display (assuming
we are using the default double-buffered configuration).

The wallclock time elapsed between the calls to mav frameBegin and mav frameEnd gives the
time taken to render a frame. The reciprocal of this value, the frame-rate, is stored in the global
MAVERIK variable mav fps, which the application can consult.

For example, you could print it in the shell window using the following code (placed after
mav frameEnd):
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printf ("frame rate: %4.2f\n", mav_fps);

N.B. For high frame rates (short elapsed time) this value will inevitably fluctuate from frame to
frame due to variations in system load and the resolution and inaccuracies of the internal clock.
The variable mav fps avg gives the frame rate averaged over the last second and does not suffer
from these problems.

3.3 Example 2: defining and displaying an object

We now extend the first example to define and render an object. In this example, eg2.c, we’ve
rearranged the code slightly from Example 1 by introducing some functions. We’ve done this to keep
the code more manageable as we work through the examples.

We’ll present the example as a whole and then describe it:

/* eg2.c */
#include "maverik.h"

/* Define a box */
void defBox(MAV_box *b)
{

b->size.x= 1.0; /* Specify its size */
b->size.y= 2.0;
b->size.z= 3.0;
b->matrix= MAV_ID_MATRIX; /* Position and orientation */
b->sp= mav_sp_default; /* Surface parameters, i.e. colour */

}

/* Render a frame */
void drawFrame(MAV_SMS *sms)
{

/* Check for and act on any events */
mav_eventsCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Display the SMS in all windows */
mav_SMSDisplay(mav_win_all, sms);

/* Request end of the frame */
mav_frameEnd();

}

int main(int argc, char *argv[])
{

MAV_box box;
MAV_object *obj;
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MAV_SMS *sms;

/* Initialise the Maverik system */
mav_initialise(&argc, argv);

/* Define a box object */
defBox(&box);

/* Register the box as a Maverik object */
obj= mav_objectNew(mav_class_box, &box);

/* Create a SMS */
sms= mav_SMSObjListNew();

/* Add object to SMS */
mav_SMSObjectAdd(sms, obj);

/* Rendering loop */
while (1) drawFrame(sms);

}

Example 2 defines a single object – a box. MAVERIK supports 19 different default primitive object
classes, including box, sphere, cone, cylinder, polygon and text – Appendix B (page 135) gives the
complete list. An application can also define its own new object classes, as described in Chapter 7
(page 69).

This is the MAVERIK data structure to represent a box, MAV box (MFS p 6):

typedef struct {
MAV_vector size; /* size of object */
MAV_surfaceParams *sp; /* surface parameters */
MAV_matrix matrix; /* transformation matrix */
void *userdef; /* user-defined data */

} MAV_box;

and comprises of:

� A MAV vector (MFS p 34), size, to define the dimensions of the box about its local coordi-
nate system origin. MAV vector’s, comprising of three floats, x, y and z, are used extensively
throughout MAVERIK to define 3D vectors.

MAVERIK, like OpenGL, is intrinsically unitless, in that it does not dictate the use of any par-
ticular set of units for its local or world coordinate systems. The choice of units is an arbitrary
decision made by the application.

There are, however, occasions when MAVERIK needs to convert from one set of units into
those used by the application. For example, we will see later how the mouse can be used to
navigate around the virtual environment. To achieve this MAVERIK needs to convert mouse
movements, measured in pixels, into eye position movements, measured in the units chosen by
the application. In these cases MAVERIK relies on the application to specify this conversion.
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� A MAV surfaceParams (MFS p 29), sp, which specifies the “surface parameters”, and deter-
mines how the object is rendered, enabling the application to specify colour, material charac-
teristics, and texture mapping. In this example we use mav sp default, the MAVERIK default
value for the surface parameters, which renders the box in a pinky-red colour. We’ll show how
to change the surface parameters in Example 3.

By default, all objects are drawn filled. You can toggle between filled and wire-frame rendering
in a window at any time by pressing Shift-F8. MAVERIK responds to a number of function keys
at run-time, and the complete set is listed in Appendix A.3 (page 128).

� A MAV matrix (MFS p 75), matrix. In MAVERIK, each object is defined in its own private
local coordinate system. This is subsequently mapped into the world coordinate system of the
virtual environment using the 4x4 transformation matrix specified by this field.

In the example we have set this to be the identity matrix (MAV ID MATRIX) so that the box is
positioned with its centre at the world coordinate origin and aligned along the major axis.

� The void *userdef is a pointer to any extra data an application wishes to attach to the object.
We don’t use this in this example.

We define the box as follows:

void defBox(MAV_box *b)
{
b->size.x= 1.0; /* Specify its size */
b->size.y= 2.0;
b->size.z= 3.0;
b->matrix= MAV_ID_MATRIX; /* Position and orientation */
b->sp= mav_sp_default; /* Surface parameters, i.e. colour */

}

Having defined the box, we now need to register it as a new MAVERIK object:

obj= mav_objectNew(mav_class_box, &box);

The function mav objectNew (MFS p 176) takes two arguments: the first is an identifier which in-
dicates the class of the object – in this case, it’s mav class box, one of the default object classes
provided by MAVERIK; the second argument is a pointer to the data structure which defines the
object.

mav objectNew registers the new object with MAVERIK, and returns a “handle” to the object, which
MAVERIK will subsequently use to refer to the object. Note that whatever the class of an object, its
handle will always be of the generic object handle type (MAV object *). And because the handle was
created by using a pointer to, rather than a copy of, the box object, the handle remains independent of
any changes the application makes to the box, such as changing its size.

One of the key aims of MAVERIK is to provide powerful methods for efficiently managing the 3D
space of a virtual environment, and the objects which inhabit that space. To achieve this, MAVERIK
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introduces the concept of a Spatial Management Structure (SMS). An SMS dictates how objects are
stored, the culling strategy, level-of-detail processing, and the order in which objects are displayed.

SMS’s are, however, too complex an issue to deal with in any depth at this point in this tutorial. At
this stage it is sufficient to say that objects must be inserted into an SMS if they are to be displayed.

In the example, we first create a new SMS to manage our virtual environment with mav SMSObjListNew (MFS
p 206):

MAV_SMS *sms;

sms= mav_SMSObjListNew();

which creates a new SMS of type “object list” (we’ll explain exactly what this means in a moment).
The call returns a “handle” to the SMS, of type MAV SMS (MFS p 103), which is used to refer to it in
future calls.

Next we add the box object into the SMS we’ve just created with mav SMSObjectAdd (MFS p 204):

mav_SMSObjectAdd(sms, obj);

A similar function, mav SMSObjectRmv (MFS p 205), removes an object from an SMS. Within the
main frame loop function drawFrame we request display of the SMS in all windows with mav SMSDisplay (MFS
p 203):

mav_SMSDisplay(mav_win_all, sms);

Note that we have not specified any viewing parameters – the eyepoint, the view direction vector, and
so on. Unless changed, MAVERIK uses a default set of viewing parameters, with the eyepoint some
distance along the positive world-coordinate Z axis looking down that axis towards the origin, with
the view-up vector parallel to the world coordinates Y axis. Viewing is described in detail in Chapter 5
(page 47).

The “object list” is the simplest type of SMS and stores objects inserted into it as a simple linked list.
When displayed with mav SMSDisplay, this type of SMS uses the axis-aligned bounding box of each
object to determine if it is visible.

More complex types of SMS are also provided, such as the “hierarchical bounding box” SMS, which
offers a more efficient culling strategy for large models. Users can also make their own SMS’s to suit
the needs of an application, e.g. one based on cells and portals or one optimized for particular shaped,
say long and thin, objects.

Whatever type of SMS is used, the process of creating it always results in the same generic handle:
(MAV SMS *). Therefore, switching between different SMS’s is simply a case of changing the single
function call which creates the SMS.
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When you run Example 2 you should see, after the welcome message has cleared, a blue screen with
a red rectangle in the middle. Since the box is viewed edge-on it appears as a rectangle. Quit the
program in the same way as for Example 1, by pressing Shift-Esc.

3.4 Example 3: Surface parameters and navigation

Our next example, eg3.c, demonstrates two more features of MAVERIK: controlling the way an
object is rendered using its surface parameters, and how to navigate around the virtual environment:

/* eg3.c */
#include "maverik.h"
#include <stdio.h>
#include <stdlib.h>

/* Define a box */
void defBox(MAV_box *b, int col)
{

b->size.x= 1.0; /* Specify its size */
b->size.y= 2.0;
b->size.z= 3.0;
b->matrix= MAV_ID_MATRIX; /* Position and orientation */

/* Define its "surface parameters", i.e. the colour with which it’s rendered */
/* Use the sign of col to indicate a material or texture, and the value */
/* of col gives the material or texture index to use */

if (col>=0)
{
b->sp= mav_surfaceParamsNew(MAV_MATERIAL, 0, col, 0); /* Use material index col */

}
else
{
b->sp= mav_surfaceParamsNew(MAV_TEXTURE, 0, 0, -col); /* Use texture index col */

}
}

/* Render a frame */
void drawFrame(MAV_SMS *sms)
{

/* Check for and act on any events */
mav_eventsCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Display the SMS in all windows */
mav_SMSDisplay(mav_win_all, sms);

/* Request end of the frame */
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mav_frameEnd();
}

int main(int argc, char *argv[])
{

MAV_box box;
MAV_object *obj;
MAV_SMS *sms;

/* Initialise the Maverik system */
mav_initialise(&argc, argv);

if (argc != 2) {
printf("usage: %s colour\n", argv[0]);
exit(1);

}

/* Define a box object */
defBox(&box, atoi(argv[1]));

/* Use default mouse navigation */
mav_navigationMouse(mav_win_all, mav_navigationMouseDefault);

/* Register the box as a Maverik object */
obj= mav_objectNew(mav_class_box, &box);

/* Create a SMS */
sms= mav_SMSObjListNew();

/* Add object to SMS */
mav_SMSObjectAdd(sms, obj);

/* Rendering loop */
while (1) drawFrame(sms);

}

In eg3.c, we’ve extended the defBox function to take an argument, col, which is used to control the
object’s surface parameters, i.e. the colour with which it is rendered.

Every MAVERIK window has a “palette” associated with it. This contains a colour table, material
table, texture table, font table, and light table, each of which is intialised with a number of default
values when the window is created. An object’s “surface parameters” specify which table entries in
the palette to use when rendering the object.

In Example 2, we used mav sp default as the surface parameters; here, we define the surface param-
eters using mav surfaceParamsNew (MFS p 210):

MAV_surfaceParams *mav_surfaceParamsNew (int mode, int colour,
int material, int texture);
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This function creates a new set of surface parameters. Depending on the value of mode, objects may
be rendered with a simple colour, a material type, a texture, or a combination of these – see Section 6.1
(page 55) for details. The remaining values, colour, material and texture, specify which entry or
entries in the palette to use. Rarely does more than one of these three values need to be given, and
values which are not applicable should be set to zero.

In the example, if col is positive, it’s used to select a material from the window’s material table; if it’s
negative, it selects a texture:

if (col>=0)
{

b->sp= mav_surfaceParamsNew(MAV_MATERIAL, 0, col, 0); /* Use material index col */
}
else
{

b->sp= mav_surfaceParamsNew(MAV_TEXTURE, 0, 0, -col); /* Use texture index col */
}

The other MAVERIK feature introduced in this example is “navigation”. Navigation is an example
of the “application behaviour” aspect of a MAVERIK program, and is enabled by calling the function
mav navigationMouse (MFS p 168):

mav_navigationMouse(mav_win_all, mav_navigationMouseDefault);

This activates the default navigation method in all active windows, controlled by the desktop mouse,
as follows:

� With the left mouse button pressed, mouse movement translates the eyepoint forwards/backwards,
and yaws (rotates about the Y axis) the view.

� With the right mouse button pressed, mouse movement translates the eyepoint up/down and
left/right;

In case you’re wondering how this works, navigation is actually triggered by the mav eventsCheck
function. In Chapter 5 (page 47) we discuss navigation in detail, listing the various navigation methods
avaliable to the application. You can also create your own customised kinds of navigation which is
described in Chapter 8 (page 93).

To execute this example you have to provide an integer on the command line to determine which
material or texture to use, e.g “eg3 5” uses default material 5 (a white-ish colour), “eg3 -1” uses
default texture 1 (a marble effect). There are 20 default materials (numbered 0–19) with number
1 being used to make the pinky-red default set of surface parameters. There are 2 default textures
(numbers 1 and 2). Section 6.1 (page 55) describes how to specify your own colours, materials and
textures.
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The initial view should be the same as the last example (except it will be a different coloured rectan-
gle), but now you will be able to move around the box using the mouse commands described above.
Quit the example in the usual manner.

3.5 Example 4: a more complex environment

Our next example, ex4.c, draws together features we have seen in the previous examples, to create
a more complex virtual environment, comprising a number of different classes of object in random
positions and orientations, with random surface parameters, and a textured ground plane.

This example demonstrates:

� defining other classes of object: a rectangle, cylinder and composite object;

� using the matrix field of an object to set its position and orientation;

� defining a texture map from a file;

� populating the virtual environment with multiple objects.

/* eg4.c */
#include "maverik.h"
#include <stdio.h>
#include <stdlib.h>

MAV_surfaceParams *sp[4];

/* Define a rectangle */
void defRect(MAV_rectangle *r)
{

r->width= 500.0; /* Size */
r->height= 500.0;
r->xtile= 3; /* Texture repeat tiling */
r->ytile= 3;
/* Orientation (RPY 0,-90,0) and position (XYZ 0,-2,0) */
r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);

/* Use decal texture with index 5 */
r->sp= mav_surfaceParamsNew(MAV_TEXTURE, 0, 0, 5);

}

/* Define a box */
void defBox(MAV_box *b)
{

/* Random box size, position/orientation and set of surface params */
b->size.x= mav_random()*30;
b->size.y= mav_random()*30;
b->size.z= mav_random()*30;
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b->matrix= mav_matrixSet(0,0,mav_random()*360,
-200+mav_random()*400,0,-200+mav_random()*400);

b->sp= sp[(int) (mav_random()*4)];
}

/* Define a cylinder */
void defCyl(MAV_cylinder *c)
{

/* Random cylinder size, position/orientation and set of surface params */
c->radius= mav_random()*20;
c->height= mav_random()*20;
c->endcap= 1;
c->nverts= 10;
c->matrix= mav_matrixSet(0,mav_random()*360,0,

-200+mav_random()*400,0,-200+mav_random()*400);
c->sp= sp[(int) (mav_random()*4)];

}

/* Define a composite object */
void defComp(MAV_composite *c)
{

/* Read AC3D object from file */
if (!mav_compositeReadAC3D("mavlogo.ac", c, MAV_ID_MATRIX)) {
printf("failed to read mavlogo.ac\n");
exit(1);

}

/* Fixed position and orientation */
c->matrix= mav_matrixSet(0,0,0, 0,0.2,-15);

}

/* Render a frame */
void drawFrame(MAV_SMS *sms)
{

/* Check for and act on any events */
mav_eventsCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Display the SMS in all windows */
mav_SMSDisplay(mav_win_all, sms);

/* Request end of the frame */
mav_frameEnd();

}

int main(int argc, char *argv[])
{

MAV_rectangle gp;
MAV_SMS *objs;
MAV_box box[10];
MAV_cylinder cyl[10];
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MAV_composite comp;
int i;

/* Initialise the Maverik system */
mav_initialise(&argc, argv);

/* Define a texture map from file, texture index 5 */
mav_paletteTextureSet(mav_palette_default, 5, "marble_floor.ppm");

/* Define a set of "surface parameters", i.e. the colour with */
/* which an object is rendered */
sp[0]= mav_surfaceParamsNew(MAV_MATERIAL, 0, 1, 0); /* Material index 1 */
sp[1]= mav_surfaceParamsNew(MAV_MATERIAL, 0, 2, 0); /* Material index 2 */
sp[2]= mav_surfaceParamsNew(MAV_MATERIAL, 0, 3, 0); /* Material index 3 */
/* Texture 1 modulated with material 2 */
sp[3]= mav_surfaceParamsNew(MAV_LIT_TEXTURE, 0, 2, 1);

/* Define a rectangle to act as the ground plane */
defRect(&gp);

/* Create an SMS for the objects and add the ground plane to it */
objs= mav_SMSObjListNew();
mav_SMSObjectAdd(objs, mav_objectNew(mav_class_rectangle, &gp));

/* Create 10 boxes and cylinders */
for (i=0; i<10; i++) {

/* Define a box and a cylinder */
defBox(&box[i]);
defCyl(&cyl[i]);

/* Add the box and cylinder to the objs SMS */
mav_SMSObjectAdd(objs, mav_objectNew(mav_class_box, &box[i]));
mav_SMSObjectAdd(objs, mav_objectNew(mav_class_cylinder, &cyl[i]));

}

/* Define a composite object and add it to objs SMS */
defComp(&comp);
mav_SMSObjectAdd(objs, mav_objectNew(mav_class_composite, &comp));

/* Use default mouse navigation */
mav_navigationMouse(mav_win_all, mav_navigationMouseDefault);

/* Rendering loop */
while (1) drawFrame(objs);

}

The example begins by defining from file marble floor.ppm entry number 5 in the default palette’s
texture table. All windows are associated with the default palette (mav palette default) unless
explicitly re-assigned. MAVERIK can read textures defined in virtually any image file format since it
uses ImageMagick’s convert program to convert the file into PPM format which is trivial to parse.
N.B. if ImageMagick is not installed then you will be limited to PPM image files.
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It then initialises an array of surface parameters. Array indices 0–2 are set to be materials from the
default set, while index 3 is default texture 1 modulated with default material 2 (effectively giving a
lit texture).

Next, new objects are defined by the functions defRect, defBox, defCyl and defComp. defRect
defines a textured rectangle:

r->width= 500.0; /* Size */
r->height= 500.0;
r->xtile= 3; /* Texture repeat tiling */
r->ytile= 3;
/* Orientation (RPY 0,-90,0) and position (XYZ 0,-2,0) */
r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);
/* Use decal texture with index 5 */
r->sp= mav_surfaceParamsNew(MAV_TEXTURE, 0, 0, 5);

The rectangle object, fully described in Section B.14 (page 150), is centered at its local coordinate
frame origin and defined by a width along its local coordinate frame X axis and a height along its Y
axis.

The rectangle is defined in the local coordinate frame XY plane with its normal along the positive Z
axis, but we want to use it in this example to represent the ground plane which is the world coordinate
frame XZ plane with a normal along the Y axis. So, the transformation between local and world
coordinate frames needs to rotate the rectangle by 270 (or -90) degrees about its local coordinate
frame X axis. Such a transformation would place the rectangle on the world coordinate frame XZ
plane at Y � 0. (MAVERIK uses a right handed coordinate system and so a rotation of just 90 degrees
would place the rectangle in the XZ plane, but with its normal aligned with the negative Y axis. We
need to rotate it a further 180 degrees in order for its normal to be correctly oriented.)

The default eyepoint is also at Y � 0 and therefore the rectangle would not be visible since we would
be viewing it exactly along the plane. To overcome this, the rectangle needs to be offset by some
amount along the negative Y axis so it appears beneath us. The same effect could more correctly be
achieved by moving the eyepoint upwards, and we show how to perform this is Chapter 5 (page 47).

This transformation matrix to achive this is defined using the function mav matrixSet (MFS p 152):

MAV_matrix mav_matrixSet(float roll, float pitch, float yaw,
float x, float y, float z);

where roll, pitch and yaw, are defined to be rotation, in degrees, about the Z, X and Y axes respec-
tively. Rotations are applied in the order roll, yaw, then pitch.

So the rectangle’s matrix is set as follows:

r->matrix= mav_matrixSet(0,-90,0, 0,-2,0);
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This places it the world coordinate frame XZ plane at Y ��� 2.

The box and cylinder objects are given a random size, position, orientation and surface parameters, as
defCyl illustrates:

c->radius= mav_random()*20;
c->height= mav_random()*20;
c->endcap= 1;
c->nverts= 10;
c->matrix= mav_matrixSet(0, mav_random()*360, 0,

-200+mav_random()*400, 0, -200+mav_random()*400);
c->sp= sp[(int) (mav_random()*4)];

where mav random (MFS p 200) returns a pseudo-random number in the range zero to one.

3.5.1 Level of detail

The cylinder in this example is rendered with nverts facets. If you set the option variable mav opt curveLOD
to MAV TRUE, then MAVERIK will ignore the nverts value and render the cylinder with as many, or as
few, facets as it deems necessary to accurately represent the curved surface. However, it will never use
more than mav opt vertsMax or less than mav opt vertsMin facets. Furthermore, the rate at which
the number of vertices used is reduced as the object recedes from the eye point, is controlled by the
arbitrary constant mav opt curveFactor. An undocumented example in the examples/misc/LOD
sub-directory of the MAVERIK distribution allows you to dynamically change these variables and
observe the effects.

Note however that even if you are using automatic level of detail, nverts must be set to a valid value
(i.e. greater than 2) since it is used for other purpose besides rendering, such as in calculating the
cylinder’s bounding box.

3.5.2 Reading objects from file

As well as its simple primitive object classes, MAVERIK also supports a “composite object”, which
comprises a set of other objects linked together. Although an application can define composite objects
“by hand”, MAVERIK provides a convenient way to create them automatically, by reading object
definitions from AC3D [1], VRML97 or Lightwave format files.

AC3D is an interactive geometry modeler which, as well as creating and editing objects, can im-
port objects defined in a number of common 3D file formats (including 3DS, DXF, Lightwave and
VRML1). defComp defines a “composite object”, read in from the AC3D file mavlogo.ac (it’s a 3D
MAVERIK logo). See Section B.18 (page 154) for full details of composite objects.

We’ll return to this example in Chapter 4.
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3.6 Summary

We hope these four simple examples have given you an insight into how to create simple applications
with MAVERIK. In subsequent chapters we’ll cover MAVERIK’s functionality in more detail, and
present more example programs to illustrate more advanced techniques.



Chapter 4

Keyboard and mouse events

In MAVERIK, an application defines the actions to be taken when mouse and keyboard events occur
using a generalised callback mechanism. In this chapter we describe how MAVERIK handles input
events, how these relate to objects, and how to write and register callback functions.

4.1 Example 5: basic event handling

This example, eg5.c, expands Example 2 from Section 3.3 (page 22) so that when the middle mouse
button is pressed while the cursor is pointing at the box, it increases in size, and when a key is pressed
a message is printed to the shell window. Note that the navigation has also been included in this
example.

If you don’t have a middle mouse button, and can’t emulate one on your operating system, then it is
trivial to modify this example to work with either the left or right buttons. However, note that the left
and right buttons will also trigger navigation.

/* eg5.c */
#include "maverik.h"
#include <stdio.h>

/* Define a box */
void defBox(MAV_box *b)
{

b->size.x= 1.0; /* Specify its size */
b->size.y= 2.0;
b->size.z= 3.0;
b->matrix= MAV_ID_MATRIX; /* Position and orientation */
b->sp= mav_sp_default; /* Surface parameters, i.e. colour */

}

/* Render a frame */
void drawFrame(MAV_SMS *sms)

35
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{
/* Check for and act on any events */
mav_eventsCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Display the SMS in all windows */
mav_SMSDisplay(mav_win_all, sms);

/* Request end of the frame */
mav_frameEnd();

}

/* Mouse event callback */
int mouseEvent(MAV_object *o, MAV_mouseEvent *me)
{

MAV_box *box;

/* Convert from generic Maverik object to the box object */
box= (MAV_box *) mav_objectDataGet(o);

if (me->movement==MAV_PRESSED) { /* Only consider button presses */
box->size.x+=1.0; /* Make box a bit bigger */

}

return 1;
}

/* Keyboard event callback */
int keyEvent(MAV_object *o, MAV_keyboardEvent *ke)
{

if (ke->movement==MAV_PRESSED) { /* Only consider button presses */
if (ke->key<255) { /* Only consider printable ASCII characters */

printf("Pressed %c (%i)\n", ke->key, ke->key);
}

}

return 1;
}

int main(int argc, char *argv[])
{

MAV_box box;
MAV_object *obj;
MAV_SMS *sms;

/* Initialise the Maverik system */
mav_initialise(&argc, argv);

/* Define a box object */
defBox(&box);
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/* Register the box as a Maverik object */
obj= mav_objectNew(mav_class_box, &box);

/* Create a SMS */
sms= mav_SMSObjListNew();

/* Add object to SMS */
mav_SMSObjectAdd(sms, obj);

/* Use default mouse navigation */
mav_navigationMouse(mav_win_all, mav_navigationMouseDefault);

/* Define mouse callback */
mav_callbackMouseSet(MAV_MIDDLE_BUTTON, mav_win_all, mav_class_box, mouseEvent);

/* Define keyboard event callback */
mav_callbackKeyboardSet(mav_win_all, mav_class_world, keyEvent);

/* Rendering loop */
while (1) drawFrame(sms);

}

Mouse and keyboard event callbacks are defined with the functions mav callbackMouseSet (MFS
p 127) and mav callbackKeyboardSet (MFS p 126) respectively. Mouse event callbacks are defined
for a specific button, while keyboard event callbacks are defined for any key.

In addition, event callbacks are defined on a per-window and per-object-class, rather than per-object,
basis. This means that, for example, all boxes will share the same event callback function. This may
seem unusual at first, but it is a fundamental way in which MAVERIK deals with objects. It would be
trivial to implement a per-object event callback mechanism by having the per-object-class callback
function execute another function which was stored in the object’s data structure and setting this to be
a different function for different objects.

Setting the callback on a per-window basis allows for objects to respond differently to events in dif-
ferent windows (we shall see in Section 6.2.6 (page 64) how to open multiple windows). However,
here we use the “all windows” identifier mav win all to set the event callback.

In this example a mouse event callback function (mouseEvent) will be called for middle mouse button
events which occur while the mouse is pointing at any box.

The keyboard event callback function (keyEvent) is set for the primitive class mav class world.
Callbacks set for this class are activated when an event occurs anywhere in the window. Two similar
classes also exist: mav class any and mav class miss. Respectively, these allow callbacks to be
defined for events which occur when the mouse is over any object, regardless of its class, and when
the mouse is over no object.

The callback functions take as their arguments the MAVERIK object which the mouse was over when
the event occurred, and a data structure which details the event. No attempt should be made to in-
terpret the MAVERIK object passed to the callback function set for the classes mav class world,
mav class any and mav class miss.
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At this stage we will ignore the significance of the return value of the callback function, and return to
this in Section 4.3 (page 40).

The first action the mouse event callback function needs to perform is to convert the MAVERIK object
which it receives in its o argument, into the box object so it can operate on it. The function which
does this, mav objectDataGet (MFS p 173), simply returns the object data pointer maintained by the
MAVERIK object. However, this is returned as a generic void pointer, rather than a pointer to a box
object, but since this callback will only be activated for MAVERIK objects which are of the box class
(observe how the callback was set), we can safely cast this pointer into a box object pointer.

The keyboard event callback function simply prints a message in the shell window indicating which
key was pressed. This data is the key field of the MAV keyboardEvent (MFS p 16) data structure
which details the event. Note that non-ASCII symbols, such as the pound and euro signs, may not
correctly interpreted.

4.2 Example 6: modifying the rendering loop

Now we have introduced some of the subtleties of event callbacks with a simple example, we return to
the “ground plane and objects” of Example 4 (page 29). We now allow the user to increase the radius
of a cylinder and scale of the composite object (the MAVERIK logo) by clicking on these objects with
the middle mouse button. The keyboard event function traps two key presses: ‘q’ which quits the
application and ‘h’ which displays a help message.

The following is excerpted from eg6.c, and shows how the event functions are used:

/* eg6.c [excerpt] */

/ * code omitted */

/* Mouse event for cylinders */
int cylEvent(MAV_object *obj, MAV_mouseEvent *ev)
{

MAV_cylinder *cyl;

/* Convert from generic Maverik object to a cylinder object */
cyl= (MAV_cylinder *) mav_objectDataGet(obj);

if (ev->movement==MAV_PRESSED) { /* Only consider button presses */
cyl->radius+=1; /* Increase cylinder radius */

}

return 1;
}

/* Mouse event for composites */
int compEvent(MAV_object *obj, MAV_mouseEvent *ev)
{
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if (ev->movement==MAV_PRESSED) {
MAV_composite *comp= (MAV_composite *) mav_objectDataGet(obj);
/* Scale composite by a factor of 1.1 */
comp->matrix= mav_matrixScaleSet(comp->matrix, 1.1);

}

return 1;
}

/* Display a help message */
void helpMsg(void *ignored)
{

mav_stringDisplay(mav_win_all, "Left mouse button - navigate forward/backward and yaw",
MAV_COLOUR_BLACK, 0, -0.95, 0.90);

mav_stringDisplay(mav_win_all, "Right mouse button - navigate up/down and left/right",
MAV_COLOUR_BLACK, 0, -0.95, 0.83);

mav_stringDisplay(mav_win_all, "Middle mouse click on cylinder - increase radius",
MAV_COLOUR_BLACK, 0, -0.95, 0.76);

mav_stringDisplay(mav_win_all,
"Middle mouse click on composite (Maverik logo) - increase scale",
MAV_COLOUR_BLACK, 0, -0.95, 0.69);

mav_stringDisplay(mav_win_all, "h - help", MAV_COLOUR_BLACK, 0, -0.95, 0.60);
mav_stringDisplay(mav_win_all, "q - quit", MAV_COLOUR_BLACK, 0, -0.95, 0.53);

}

/* Keyboard event */
int keyEvent(MAV_object *obj, MAV_keyboardEvent *ke)
{

switch (ke->key) {
case ’q’: /* Quit */
exit(1);
break;

case ’h’: /* Help */
if (ke->movement==MAV_PRESSED)
{

/* Begin executing function helpMsg at the end of each frame */
mav_frameFn3Add(helpMsg, NULL);

}
else
{

/* Stop executing function helpMsg at the end of each frame */
mav_frameFn3Rmv(helpMsg, NULL);

}
break;

}

return 1;
}

int main(int argc, char *argv[])
{

/* code omitted */
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/* Define mouse event callbacks */
mav_callbackMouseSet(MAV_MIDDLE_BUTTON, mav_win_all, mav_class_cylinder, cylEvent);
mav_callbackMouseSet(MAV_MIDDLE_BUTTON, mav_win_all, mav_class_composite, compEvent);

/* Define keyboard event callback */
mav_callbackKeyboardSet(mav_win_all, mav_class_world, keyEvent);

/* code omitted */

This example shows how we can modify the rendering loop by dynamically adding and removing
application-defined functions which are executed at various stages in the rendering loop.

Rendering a frame can be broken down into 3 phases:

� Phase 1: before the window is cleared and the view for the frame is fixed;

� Phase 2: the window is now cleared, the view is fixed, but no objects have yet been drawn;

� Phase 3: all objects have now been drawn and the frame is complete, but the buffers have not
yet been swapped.

The functions mav frameFn1Add (MFS p 136) and mav frameFn1Rmv (MFS p 136) respectively add
and remove functions to be executed at phase 1; there are corresponding functions for the other ren-
dering phases, named mav frameFnNAdd (where N is 1, 2 or 3). There is no limit on the number of
functions which can be added to each phase. The second argument to mav frameFnNAdd is not in-
terpreted by MAVERIK, rather it forms the single parameter to the application defined function thus
allowing data to be passed into the function. This feature is not used in this example.

Example 6 adds the function helpMsg to be executed at phase 3 when the ‘h’ key is pressed. When
that key is released the function is removed. helpMsg prints a help message on screen using the
function mav stringDisplay (MFS p 208) which takes as its arguments the window on which it
acts, the string to display, the colour and font to use and where to position the text. This text is not a
3D object in the world, but rather “annotation text” overlayed on the 2D window. The position of the
string is given as an x � y position where

� � 1 ��� 1 � maps to the bottom left of the screen and
�
1 � 1 � to

the top right.

Note that either of phases 2 or 3 would suffice to display this message, but if phase 1 was used nothing
would have been displayed since the message would have been rendered before the window was
cleared.

4.3 Example 7: advanced event handling

We now extend Example 6 to demonstrate more advanced event handling and the use of so-called
“process-based” callbacks. This term refers to callbacks which perform arbitrary operations on objects
– it does not refer to “processes” in the Unix sense of the word.
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The following code is excerpted from eg7.c.

/* eg7.c [excerpt] */

/* code omitted */

MAV_matrix *objMat1, *objMat2;
float objDist;
int fc=0;

/* Function to make object jump */
void jump(void *ignored)
{

/* Increase Y component of matrix by an ammount which ranges
+4 to -4 over 60 interactions */

objMat1->mat[MAV_MATRIX_YCOMP]+=cos(MAV_DEG2RAD(fc*3.0))*4.0;

/* Stop executing this function after 60 frames */
fc++;
if (fc>60) {
fc=0;
mav_frameFn1Rmv(jump, NULL);

}
}

/* Function to drag object with mouse */
void pick(void *ignored)
{

MAV_vector pos;

/* Calculate the position of a point a distance objDist away from the eye along */
/* the normalized vector defined by the eye point and the mouse’s projection */
/* onto the near clip plane (this is mav_mouse_dir) */
pos= mav_vectorAdd(mav_win_current->vp->eye, mav_vectorScalar(mav_mouse_dir, objDist));

/* Set the object’s matrix to this position */
*objMat2= mav_matrixXYZSet(*objMat2, pos);

}

/* Keyboard event */
int keyEvent(MAV_object *obj, MAV_keyboardEvent *ke)
{

MAV_surfaceParams **spptr;

switch (ke->key) {
case ’q’: /* Quit */
exit(1);
break;

case ’h’: /* Help */
if (ke->movement==MAV_PRESSED)
{
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/* Begin executing function helpMsg at the end of each frame */
mav_frameFn3Add(helpMsg, NULL);

}
else
{

/* Stop executing function helpMsg at the end of each frame */
mav_frameFn3Rmv(helpMsg, NULL);

}
break;

}

/* Only consider event if the mouse was pointing at an object */
if (ke->intersects) {
if (ke->movement==MAV_PRESSED) { /* Only consider button press event */

switch (ke->key) {
case ’d’: /* Delete an object */

mav_objectDelete(ke->obj);
break;

case ’b’: /* Increase size of box */
/* Ensure object is a box */
if (mav_objectClassGet(ke->obj)==mav_class_box)
{
/* Convert from generic Maverik object to a box object */
MAV_box *box= (MAV_box *) mav_objectDataGet(ke->obj);
box->size.x+=0.5; /* Increase size of box */

}
else
{
printf("Object is not a box\n");

}
break;

case ’c’: /* Change colour */
if (mav_callbackGetSurfaceParamsExec(mav_win_current, ke->obj, &spptr)) {
/* Get a ptr to the surfaceParmas field of the object */
*spptr= sp[(int) (mav_random()*4)]; /* Set it to some random value */

}
break;

case ’j’: /* Make object jump */
if (fc==0) { /* Only if something is not currently in flight */
/* Get a ptr to the matrix field of the object */
if (mav_callbackGetMatrixExec(mav_win_current, ke->obj, &objMat1)) {

/* Begin executing function jump at the start of each frame */
mav_frameFn1Add(jump, NULL);

}
}
break;

}
}

switch (ke->key) {
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case ’p’: /* Pick object */
if (ke->movement==MAV_PRESSED)
{

/* Get a ptr to the matrix field of the object */
if (mav_callbackGetMatrixExec(mav_win_current, ke->obj, &objMat2)) {
/* Remember distance from eye to object intersection */
objDist= ke->objint.pt1;
/* Begin executing function pick after the view has been set */
mav_frameFn2Add(pick, NULL);

}
}
else
{

/* Stop executing function pick after the view has been set */
mav_frameFn2Rmv(pick, NULL);

}
break;

}
}

return 1;
} /* keyEvent */

int main(int argc, char *argv[])
{

/* code omitted */

/* Create an SMS for the ground plane and add rectangle object to it */
groundPlane= mav_SMSObjListNew();
mav_SMSObjectAdd(groundPlane, mav_objectNew(mav_class_rectangle, &gp));

/* Make objects in groundPlane SMS unselectable to keyboard and mouse event */
mav_SMSSelectabilitySet(groundPlane, mav_win_all, MAV_FALSE);

/* code omitted */
}

Recall that the keyboard event callback is registered for the mav class world class and as such the
MAVERIK object passed to the callback function should not be interpreted. However, stored in both
the keyboard and mouse event data structures is the object which the mouse was over when the event
occurred. This information is stored in the obj field of the data structure along with intersects
which indicates if the cursor was pointing at an object.

In Example 7, pressing the ‘d’ key deletes the object the mouse is pointing at. This is achieved by
calling mav objectDelete (MFS p 175) which removes the object from any SMS’s which it is in
before deleting the object.

By default, any object which is in an SMS can activate the event callbacks. However, an SMS can
be set to be “non-selectable” and objects in such an SMS will not trigger event callbacks if the
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mouse was pointing at them. So, by having multiple SMS’s an application can maintain groups of
objects which are selectable, and groups which are not. Example 7 uses two SMS’s: one for the
ground plane, and one for the remaining objects. The SMS containing the ground plane object is set
to be non-selectable and so pointing at this object will not trigger keyboard and mouse events. Note:
setting the selectability of an SMS also determines whether it is searched in the functions which check
whether a line or bounding box intersect any objects – mav SMSIntersectLineAll (MFS p 289) and
mav SMSIntersectBBAll (MFS p 287) respectively.

Pressing ‘b’ increases the size of a box. This is similar to Example 5 (page 35) except that now we
first have to ensure that the object pointed to by the mouse really is a box. This is achieved with the
function mav objectClassGet (MFS p 172) which returns the class of an object.

4.3.1 Process-based callbacks

The ‘c’ key changes the set of surface parameters which are used to render the object which the mouse
is pointing at. All of the default MAVERIK primitives have this field, named sp, in their data structure.
The problem is: how can we access this field when we only have a generic MAVERIK object to work
with?

One way would be to have a large switch statement which checked the class of the MAVERIK object
(using the function described above for the ‘b’ key) and then casts the data portion of the MAVERIK

object to be the data structure appropriate for this type of primitive, thus allowing direct access to the
required field.

Alternatively, it could be arranged that for each class of object there was a function which returned
a pointer to its surface parameters field (a pointer being more useful since it can be used to change
the value stored in the data structure). The function would take as input a MAVERIK object, cast the
data portion of this to be the relevant data structure for the class of object and return a pointer to the
required field. Furthermore, if this function was accessible via the MAVERIK class data structure, then
there is enough information encapsulated in a MAVERIK object to execute the relevant function and
gain access to the surface parameters field.

While appearing overly complicated at first, the second method is, in fact, preferable since it allows
for new classes of objects to be seamlessly added. (Using the first method you would have to extend
the switch statement to accommodate the new class). The ability to add new classes of objects is a
key aspect of MAVERIK and we show how this is performed in Chapter 7.

Essentially this is a callback mechanism and it can be thought of as being analogous to the event-
based callbacks introduced earlier in this chapter. To distinguish between the two, we call the type
of callback just introduced “process-based” since they perform an arbitrary processing operation on a
object – such as accessing a specific data field. A conceptual difference between the two is that event-
based callbacks are executed by MAVERIK, whereas process-based callbacks are explicitly invoked
by the application itself. However, this does not prevent them being implemented with the same
mechanism.

The function mav callbackGetSurfaceParamsExec (MFS p 263) executes the “get surface param-
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eters” process-callback on an object. Its full prototype is:

int mav_callbackGetSurfaceParamsExec(MAV_window *w, MAV_object *o,
MAV_surfaceParams ***sp);

Let’s break this function prototype down into each parameter.

The first argument, w, is a MAVERIK window and indicates which window the callback is being
executed for. This seems very strange at first, but recall from earlier in this chapter that event-based
callbacks are defined on a per-window and per-object class basis (thus allowing objects the ability to
respond to mouse event differently in different windows). And, as the two different types of callback
are implemented by the same mechanism, process-based callbacks are also defined on the same basis.
That said, the authors cannot envisage the case where, for example, the “get surface parameters”
callback function would be implemented differently in different windows!

The second argument, o, is the MAVERIK object in question.

The third argument is a triple pointer to a MAVERIK surface parameters data structure – actually, it’s
the address of a pointer to the required field in the data structure. Put another way, recall that a pointer
to the desired field in the data structure is required so that its value can be set. Unfortunately, the
required field is itself a pointer, and so a pointer to this pointer is needed. Furthermore, this value can
not be passed back as the functions return value since that is used for another purpose (see below).
Therefore, the only option is to pass into the function the address of a pointer to the required field so
that the function can set the contents of this address to be the appropriate value. Hopefully, its use in
Example 7 (summarized below) will help clarify this:

MAV_surfaceParams **spptr;
if (mav_callbackGetSurfaceParamsExec(mav_win_current, ke->obj, &spptr)) {
*spptr= sp[(int) (mav_random()*4)]; /* Set it to some random value */

}

Note the use of the “current window” handle mav win current to specify the window the callback is
being executed for. Virtually all process-based callbacks are executed in this manner.

The return value of this function call is MAV TRUE or MAV FALSE and indicates if the callback was
successful. There are two reasons why the execution of a callback can fail: either there is no callback
function provided for this class of object, or the callback function could not successfully complete the
operation for some reason.

The ‘j’ key makes the object pointed at “jump in the air”. This is achieved by using the “get matrix”
process-based callback to obtain a pointer to the transformation matrix of the object under the cursor.
The Y position component of this matrix is then manipulated by a mav frameFn1 function to move
the object vertically up 4 units and then back down by the same amount over 60 consecutive frames.
One point worth noting in the implementation of this is that the frame function automatically removes
itself after the 60 frames have elapsed.

Holding down the ‘p’ key allows the user to drag an object around the scene with the mouse.
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In order to describe how this is achieved we have to introduce the concept of the mouse’s 3D world
position. While the desktop mouse is intrinsically a 2D device, its position can be mapped onto the
near clip plane to give it a 3D position in the world. A vector can be defined using the eyepoint and
this position. It is the intersection of any objects with this vector thats allows MAVERIK to determine
if the mouse is pointing at any object. This vector turns out to be very useful and so is calculated by
MAVERIK at the start of each frame and stored in the global variable mav mouse dir.

Back to moving objects around. When the key press event occurs, the distance from the eye to the first
point of intersection on the objects surface is noted. This value, pt1, is part of the MAV objectIntersection (MFS
p 78) data structure, objint, which itself is part of both the keyboard and mouse event data struc-
tures. In addition, the “get matrix” process-based callback is executed on the selected object and a
mav frameFn1 function is added.

This function sets the positional part of the transformation matrix so that the object is maintained at
the noted distance from the eyepoint along the vector described above.

When the ‘p’ key is released the frame function is removed and the object stops following the cursor.
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Viewing and navigation

So far the examples have used the default viewpoint and mouse navigation. In this chapter we will
show how an application can override these defaults and specify its own.

5.1 View parameters

The MAVERIK viewing model is based on the standard computer graphics viewing model, where the
application defines:

� an eyepoint – the position of the eye in world coordinates;

� a view direction – a normalized vector indicating the direction of view from the eyepoint;

� the view up – a normalized vector defining the viewer’s “up” direction.

In addition, an application also needs to define the following:

� the World up (or fixed up) vector – a normalized vector indicating the direction of the World
“up” direction. This is not actually used to define the view but needed by the default navigation.

� the view modifier function – the meaning of which can be ignored for now (it is described in
Chapter 11.2 (page 116)) but we need to mention it because its value must explicitly be set to
NULL.

Collectively, all the above data is called the “view parameters” and are stored in the MAV viewParams (MFS
p 36) data structure:

typedef struct {

47
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MAV_vector eye; /* eyepoint */
MAV_vector view; /* view direction vector */
MAV_vector up; /* view up vector */
MAV_vector fixed_up; /* world up vector */
MAV_viewModifierFn mod; /* view modifier function */

} MAV_viewParams;

The data structure actually contains additional fields, but we’ll ignore them for now.

We’ll describe how to define the parameters for a perspective view (the horizontal and vertical fields
of view), in Chapter 6.

Each MAVERIK window has an associated set of view parameters which, by default, is mav vp default
which is:

eye= (0, 0, 10); /* eye on the positive z-axis... */
view (0, 0, -1); /* ...looking down z-axis towards origin */
up= (0, 1, 0); /* "up" direction parallel to world y-axis */
fixed_up= (0, 1, 0); /* "world up" is world y-axis */
mod= NULL; /* no view modifier function */

A window can be associated with a different set of view parameters with the function
mav windowViewParamsSet (MFS p 241):

void mav_windowViewParamsSet(MAV_window *w, MAV_viewParams *vp);

where w is the window in question and vp a pointer to the view parameters to use. (Since a pointer
is used the window does not need to be notified if the values of the view parameters subsequently
change).

A pointer to the view parameters associated with a window is held in the vp field of the MAV window (MFS
p 94) data structure.

Example 8 (eg8.c) modifies Example 7 (page 40) to define a set of view parameters, and to associate
them with all windows, as follows:

MAV_viewParams vp;

/* Define initial view parameters */
vp.eye.x= 0; /* Eyepoint */
vp.eye.y= 25;
vp.eye.z= 200;

vp.view.x= 0; /* View direction */
vp.view.y= 0;
vp.view.z= -1;
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vp.up.x= 0; /* View up direction */
vp.up.y= 1;
vp.up.z= 0;

vp.fixed_up= vp.up; /* World up direction */
vp.mod= NULL; /* No view modification required */

/* Use these view parameters in all windows */
mav_windowViewParamsSet(mav_win_all, &vp);

The keyboard event callback has been modified in this example to trap the ‘r’ key which will reset the
view parameters to their initial values as follows:

mav_win_current->vp->eye.x= 0; /* eyepoint */
mav_win_current->vp->eye.y= 25;
mav_win_current->vp->eye.z= 200;

mav_win_current->vp->view.x= 0; /* View direction */
mav_win_current->vp->view.y= 0;
mav_win_current->vp->view.z= -1;

mav_win_current->vp->up.x= 0; /* View up direction */
mav_win_current->vp->up.y= 1;
mav_win_current->vp->up.z= 0;

Note how the values are set since the view parameters data structure (vp) is defined in the main routine
and hence is not visible to the keyboard callback routine.

5.2 Navigation

We saw in Example 3 (page 26) how default mouse navigation was invoked using the function
mav navigationMouse (MFS p 168):

mav_navigationMouse(mav_win_all, mav_navigationMouseDefault);

Related to this is the function mav navigationMouseDefaultParams (MFS p 170):

void mav_navigationMouseDefaultParams(MAV_window *w, int but,
MAV_navigatorFn x, float xls, float xas,
MAV_navigatorFn y, float yls, float yas);

which controls the default mouse navigation.
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w and but respectively specify the window and mouse button. The remaining arguments are two sets
of three values, the first set for horizontal (or x) mouse movement, the second for vertical (or y). The
three arguments in each set are:

� x (and y): a navigator function to perform the type of navigation required (described below).

� xls (and yls): the scaling factor to convert from pixels into application units in order to apply
linear movements.

� xas (and yas): the scaling factor to convert from pixels into radians in order to apply angular
movements (this is usually independent of the application).

For example, the following defines navigation triggered by the left mouse button. Horizontal move-
ments of the mouse yaws the view; and vertical movement moves the view forward:

mav_navigationMouseDefaultParams(mav_win_all, MAV_LEFT_BUTTON,
mav_navigateYaw, 0.002, -0.0001,
mav_navigateForwards, 0.002, 0.0001);

A vertical mouse movement of 100 pixels equates to the eyepoint moving 0.2 (100 � 0 	 002) applica-
tion units forwards.

Note that as is negative for mav navigateYaw. This is because a right-handed coordinate system is
assumed which implies that a positive yaw will rotate the view to the left. This is the opposite to what
is required, and so a negative scaling factor is used to compensate.

Section A.3 describes how the linear scaling factor can be changed at run-time.

5.2.1 The default navigator functions

This section lists all the default navigator functions in MAVERIK. See Chapter 8 (page 93) for details
of how to create your own customised navigators.

The scaling factor applicable to each navigator function is shown in brackets at the end of the descrip-
tion. All the navigator functions implemented so far use either ls or as but never both (however, it is
conceivable that a navigator function could be written which does).

� mav navigateNull does nothing.

� mav navigateTransX translates the eyepoint along the world x-axis (ls).

� mav navigateTransY translates the eyepoint along the world y-axis (ls).

� mav navigateTransZ translates the eyepoint along the world z-axis (ls).
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� mav navigateRotRight rotates the view direction vectors and the eyepoint about the view
right vector (as). The center of rotation is defined by mav nav center which defaults to the
origin.

� mav navigateRotUp rotates the view direction vectors and the eyepoint about the view up
vector (as). The center of rotation is defined by mav nav center which defaults to the origin.

� mav navigateRotFixedUp rotates the view direction vectors and the eyepoint about the fixed
view up vector (as). The center of rotation is defined by mav nav center which defaults to the
origin.

� mav navigateForwards moves the eyepoint forwards along the view direction vector (ls).

� mav navigateForwardsFixedUp moves the eyepoint along the projection of the view vector
onto the plane normal to the global up vector (ls).

� mav navigateUp moves the eyepoint along the view up vector (ls).

� mav navigateUpFixedUp moves the eyepoint along the global up vector (ls).

� mav navigateRight moves the eyepoint along the view right vector (ls).

� mav navigateRightFixedUp moves the eyepoint along the projection of the view right vector
onto the plane normal to the global up vector (ls).

� mav navigateRoll rotates the view vectors about the view direction vector (as).

� mav navigatePitch rotates the view vectors about the view right vector (as).

� mav navigatePitchFixedUp rotates the view vectors about the projection of the view right
vector onto the plane normal to the global up vector (as).

� mav navigateYaw rotates the view vectors about the view up vector (as).

� mav navigateYawFixedUp rotates the view vectors about the world up vector by an amount
(as).

The default mouse navigation parameters are internally set within MAVERIK with the calls:

mav_navigationMouseDefaultParams(mav_win_all, MAV_LEFT_BUTTON,
mav_navigateYawFixedUp, 0.001, -0.00005,
mav_navigateForwardsFixedUp, 0.001, 0.00005);

mav_navigationMouseDefaultParams(mav_win_all, MAV_RIGHT_BUTTON,
mav_navigateRight, 0.001, 0.00005,
mav_navigateUp, 0.001, 0.00005);

The behaviour of the default mouse navigation is modified in Example 8 by the call:
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mav_navigationMouseDefaultParams(mav_win_all, MAV_RIGHT_BUTTON,
mav_navigateYawFixedUp, 0.001, -0.00005,
mav_navigatePitchFixedUp, 0.001, 0.00005);

so that the right mouse button yaws and pitches the view.

5.2.2 Keyboard navigation

Example 8 also uses keyboard navigation, the interface to which is very similar to that of mouse
navigation. Keyboard navigation is invoked using mav navigationKeyboard (MFS p 164):

mav_navigationKeyboard(mav_win_all, mav_navigationKeyboardDefault);

The default keyboard navigation gives you the following “Doom” style controls:

� Cursor keys – navigate forwards/backwards and yaw;

� Page up/down – navigate up/down;

� Alt-Cursor left/right – sidestep left/right;

� Alt-Page up/down – pitch view up/down;

� Holding down “shift” doubles the rate of movement.

Control of the default keyboard navigation is more limited that the mouse variety since you can’t
redefine the actions taken by the various keys.

The function mav navigationKeyboardDefaultParams (MFS p 167):

void mav_navigationKeyboardDefaultParams(MAV_window *w, float am, float ls, float as);

allows you to define the linear and angular scaling factors (ls and as) used by the default keyboard
navigation. The value am can be thought of as the amount of movement a key gives (this value is
multiplied by the appropriate scaling factor to give the true movement). Setting am to 50 (its default
value) makes a navigation function invoked by the keyboard equivalent to it being invoked by 50
pixels of mouse movement.

5.3 User-defined data

Example 8 demonstrates a method of associating application-specific data structures with the standard
MAVERIK object.
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Recall that each MAVERIK object has a void pointer field, userdef, in its data structure. As the name
suggests, this is a user-definable field that an application is free to use as it wishes – MAVERIK never
interprets it. Typically, an application will use this field to point to its own data structures.

In this example a unique number is associated with each box in the scene as follows:

/* Application specific data structure */
typedef struct {
int no;

} MyStruct;

/* Define a box */
void defBox(MAV_box *b, int no)
{
/* Create and fill in application specific data structure */
MyStruct *ms= (MyStruct *) mav_malloc(sizeof(MyStruct));
ms->no= no;

/* code omitted */

/* Set userdef part to point to application-specific data structure */
b->userdef= ms;

}

The boxes are then created in main with:

defBox(&box[i], i);

where i is the loop counter.

This number is obtained in the keyboard event callback trap which increases the size of the box (the
‘b’ key):

/* Convert from generic Maverik object to a box object */
MAV_box *box= (MAV_box *) mav_objectDataGet(ke->obj);

/* Get application specific data structure */
MyStruct *ms= (MyStruct *) box->userdef;

/* Increase size of box */
box->size.x+=0.5;

/* Print contents of application specific data structure */
printf("box number %i\n", ms->no);
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Chapter 6

Miscellaneous Level 1 topics

We’ve now come to the end of the worked examples for the MAVERIK Programming Level 1 section
of this manual. This chapter describes various miscellaneous concepts and function calls that a Level
1 programmer will need to know about, but which have not been covered by the worked examples. For
example: changing the background colour; defining materials; opening multiple windows; and stereo
viewing. Some of these ideas and functions are demonstrated by undocumented examples which can
be found in the various sub-directories of the examples/misc directory of the MAVERIK distribution.

This chapter should be considered as an appendix or reference section to Programming Level 1. Some
repetition of the material in the earlier chapters is inevitable.

6.1 Rendering

In this section we describe the MAVERIK functions and datatypes used to control object rendering.
The MAVERIK rendering model is very similar to the OpenGL rendering model, and we assume that
the reader is familiar with the OpenGL approach (if not, please refer to OpenGL documentation).

6.1.1 Rendering palettes

The way in which an object is rendered is controlled by its “surface parameters”, which index into a
rendering palette. By default, MAVERIK uses a single rendering palette, called mav palette default,
which is created and initialised by mav initialise.

A palette contains an ambient light specification, a light table, a colour table, a materials table, a
texture table and a font table.

Each MAVERIK window is associated with a palette, and when the window is first created, it automat-
ically becomes associated with mav palette default.

55
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An application can define a new palette using mav paletteNew (MFS p 283):

MAV_palette *mav_paletteNew(void);

and can associate a palette p with a window w using mav windowPaletteSet (MFS p 292):

void mav_windowPaletteSet(MAV_window *w, MAV_palette *p);

Upon creation the contents of the palette are undefined. A palette supports a maximum of mav opt maxColours
colours, mav opt maxMaterials materials, mav opt maxTextures textures, mav opt maxFonts fonts
and mav opt maxLights lights. The default for these values, 150, 150, 150, 10 and 5 respectively,
can be changed before MAVERIK is initialised but they must not be modified afterwards.

6.1.2 Surface parameters

An object’s surface parameters refer to entries in the palette associated with the window in which
the object is rendered. Surface parameters are encoded in the MAV surfaceParams (MFS p 29) data
structure. Each object stores a pointer to a MAV surfaceParams data structure, which allows several
objects to share a common set of surface parameters:

typedef struct {
int mode; /* rendering mode */
int colour; /* emissive colour */
int material; /* ambient, diffuse and specular material */
int texture; /* texture map */

} MAV_surfaceParams;

The way the fields are interpreted depends on mode, as follows:

mode = MAV COLOUR: the object has a uniform emissive colour, obtained from palette colour table
entry colour.

mode = MAV MATERIAL: the object has ambient, diffuse, specular and emissive surface material prop-
erties, obtained from palette material table entry material.

mode = MAV TEXTURE: the object has a texture mapped onto its surface, obtained from palette texture
table entry texture.

mode = MAV LIT TEXTURE: the object has a texture mapped onto its surface, which is also lit as
specified for MAV MATERIAL mode. Both the palette material table entry material, and the
palette texture table entry texture are used.
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mode = MAV BLENDED TEXTURE: the object has a colour which is an interpolation between the mate-
rial and texture colours, governed by the alpha value of the texture. When alpha = 0, colour=
material; when alpha = 1, colour = texture. Both the palette material table entry material, and
the palette texture table entry texture are used.

An example program showing the different texture rendering modes can be found in the textures
sub-directory of the miscellaneous examples.

To create a new set of surface parameters, use mav surfaceParamsNew (MFS p 210), which for
convenience also sets the initial values:

MAV_surfaceParams *mav_surfaceParamsNew(int mode, int col, int mat, int texture);

For example,

box.sp= mav_surfaceParamsNew(MAV_COLOUR, 5, 0, 0);

creates and assigns to box.sp a new set of surface parameters which specify that the object is to
be rendered using MAV COLOUR mode, using palette colour index 5. In this example, the irrelevant
material table and texture table indexes are set to 0.

6.1.3 Defining colours, materials and textures

An emissive colour is defined using four floats, each in the range 0–1, for the red, green, blue and
alpha (RGBA) components, using mav paletteColourSet (MFS p 180):

void mav_paletteColourSet(MAV_palette *p, int index, float r, float g, float b, float a);

The alpha component is used to define the “transparency” of a colour, i.e. how much of the underlying
RGB colour is visible through the defined RGB colour. An alpha value of zero makes the colour fully
transparent, a value of one makes it fully opaque and fractional values cause the resultant colour to be
a blending of the underlying colour with the defined colour. N.B. In order for transparency to work
correctly the option variable mav opt trans must be set to MAV TRUE before MAVERIK is initialised.

A material has four sets of RGBA values for the ambient, diffuse, specular and emissive components
plus a value for its “shininess”, set using mav paletteMaterialSet (MFS p 186):

void mav_paletteMaterialSet(MAV_palette *p, int index,
float ar, float ag, float ab, float aa,
float dr, float dg, float db, float da,
float sr, float sg, float sb, float sa,
float er, float eg, float eb, float ea,
float shin);
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Texture maps are defined from file using mav paletteTextureSet (MFS p 193):

int mav_paletteTextureSet(MAV_palette *p, int index, char *filename);

MAVERIK itself only supports the PPM (raw or ASCII encodings) and PNG1 file formats for textures.
However, MAVERIK can use the ImageMagick convert program, if installed, to convert almost any
other image file format into PPM or PNG and then parse that. This conversion process is hidden from
the user so that MAVERIK appears to support virtually all image file formats. Furthermore, MAVERIK

uses ImageMagick’s convert program to resize the image, if needed, so that it is an integer power of
2 in both width and height – a requirement placed on texture images by OpenGL.

To use this feature you must ensure that the PATH environment variable is set such that the convert
program is picked up.

6.1.4 Texture manipulation

mav paletteTextureSetFromMem (MFS p 194) defines a texture map from an area of memory rather
than a file, to allow the procedural generatation of textures:

int mav_paletteTextureSetFromMem(MAV_palette *p, int index, int width, int height,
unsigned long *mem);

where mem is ABGR ordered.

The mipmapping of textures is controlled by the global option variable mav opt mipmapping (which
is MAV FALSE by default) and by the function mav paletteTextureMipmappingSet (MFS p 192)
which overrides the global default for a specific texture:

void mav_paletteTextureMipmappingSet(MAV_palette *p, int index, int v);

where v is set to either MAV TRUE or MAV FALSE to enable or disable mipmapping respectively. If a tex-
ture is to be mipmapped then this must be specified before it is defined with mav paletteTextureSet
or mav paletteTextureSetFromMem. Once defined with mipmapping enabled, this function can be
used to specify if a texture is mipmapped when rendered. An example of mipmapping can be found
in the textures sub-directory of the miscellaneous examples .

mav paletteTextureAlphaSet (MFS p 188) sets the alpha component of a texture to be some value.
This allows for transparent textures:

void mav_paletteTextureAlphaSet(MAV_palette *p, int index, float a);

1PNG support must be specified when MAVERIK is compiled and the PNG and zlib libraries must be installed.
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mav paletteTextureColourAlphaSet (MFS p 189) is similar to the above but only sets the alpha
for pixels whose colour is r,g,b:

void mav_paletteTextureColourAlphaSet(MAV_palette *p, int index,
int r, int g, int b, float a);

This gives textures, portions of which are transparent. Since r,g,b are used in a comparison test they
are ints in the range 0–255 rather than floats.

Typically you would make a texture with the portions you wish to be transparent to be, say, black and
then use this function to set the alpha component of that colour.

A texture environment is a set of parameters governing how textures are applied. Specially it covers
how minification and magnification of the texture is to be performed and if texture coordinates are
clamped or repeated. These are separate issues from whether the texture is applied decal or modulating
the underlying colour.

Rather than try to cater for all the possible combinations, MAVERIK relies on the application to define
a callback function to set the relevant texture environment for the texture. The callback function
is called each time a texture is rendered. mav paletteTextureEnvPaletteSet (MFS p 190) and
mav paletteTextureEnvSet (MFS p 326) sets this callback function on a per-palette and per-texture
basis.

void mav_paletteTextureEnvPaletteSet(MAV_palette *p, MAV_texEnvFn fn);
int mav_paletteTextureEnvSet(MAV_palette *p, int index, MAV_texEnvFn fn);

A callback set for a texture takes precedence over one defined for a palette. When a palette is created it
has a default per-palette callback defined for it and when textures are created they have no per-texture
callback defined. The default per-palette callback implements the common texture environment of
repeating texture coordinates and using linear interpolation to perform minification and magnification.

6.1.5 Defining fonts

A font is defined using the function mav paletteFontSet (MFS p 181):

void mav_paletteFontSet(MAV_palette *p, int index, char *s);

where p and index have the usual meaning and s is a string defining the X font to use. X fonts have a
cryptic, but logical, naming scheme. Look at the fonts sub-directory of the miscellaneous examples
to see this function in action. The names of the X fonts available on your machine can be found with
the standard xfontsel program.
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6.1.6 Defining lights

Material definitions only make sense if the scene is lit. MAVERIK provides the following default light
and lighting model:

� Lighting model: RGBA (0.4, 0.4, 0.4, 1.0) using a local viewer;

� Light: ambient (0,0,0,1), diffuse (1,1,1,1), specular (1,1,1,1), positioned at (100, 150, 150).

An application can redefine the lighting model using mav paletteLightingModelSet (MFS p 182):

void mav_paletteLightingModelSet(MAV_palette *p, float ar, float ag, float ab, float aa,
int local);

which takes as its parameters the ambient RGBA value for the scene and an indication of whether to
use local, as opposed to infinite, viewer lighting calculations.

The definition of a light source specifies RGBA values for the ambient, specular and diffuse compo-
nents, via mav paletteLightSet (MFS p 185):

void mav_paletteLightSet(MAV_palette *p, int index,
float ar, float ag, float ab, float aa,
float dr, float dg, float db, float da,
float sr, float sg, float sb, float sa);

Lights are positioned using a vector to define their location using mav paletteLightPos (MFS
p 183):

void mav_paletteLightPos(MAV_palette *p, int index, MAV_vector pos);

The function mav paletteLightPositioning (MFS p 184) defines whether this position is relative
to the eye point or is in world coordinates:

void mav_paletteLightPositioning(MAV_palette *p, int index, int pos);

If pos is set to MAV LIGHT RELATIVE (the default) the position is relative to the eye point, and sub-
sequently follows it, to give a car-headlight effect. Setting pos to MAV LIGHT ABSOLUTE specifies the
position is in world coordinates to give the effect of a light at a fixed position in the model.

An example of positioning lights can be found in the lights sub-directory of the miscellaneous
examples.
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6.1.7 Finding an empty or matching palette index

Functions exist for obtaining an empty (i.e. unused) index for the various components in a palette.
For example, mav paletteColourIndexEmptyGet (MFS p 177):

int mav_paletteColourIndexEmptyGet(MAV_palette *p);

returns an empty colour index in the supplied palette. If no empty index can be found, -1 is returned
and a warning message printed to stderr.

Similar functions exist, described in the MFS on the same page as the above function, for returning
empty indices for the other components of a palette.

A matching colour index in a palette can be found by using mav paletteColourIndexMatchGet (MFS
p 178):

int mav_paletteColourIndexMatchGet(MAV_palette *p, float r, float g, float b, float a);

which returns the index of a colour which matches the supplied values, or -1 if no match can be found.
As above, similar functions exist for the other components of a palette.

6.2 Windows

6.2.1 Specifying a perspective view

So far, we have discussed the viewing parameters which describe the application’s view of the virtual
environment. In order to display this view in a window we also need to define how that view is
projected onto the screen to give the final scene. Using the standard analogy of a camera, we not only
need to position the camera but to also decide which type of lens to use.

In common with most graphics systems, MAVERIK makes a distinction between the processes of
defining the view and defining how that is projected onto the screen. The most common type of
projection is a perspective projection, which is specified using mav windowPerspectiveSet (MFS
p 236):

void mav_windowPerspectiveSet(MAV_window *w, float ncp, float fcp, float fov,
float aspect);

This function defines a perspective projection for window w with near clip plane distance ncp, far clip
plane distance fcp, a vertical field of view fov and aspect ratio aspect. fov is defined in degrees and
is in the range [0–180]. To give a distortion-free projection, aspect should match the aspect ratio of
the window.
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The figure below shows how these parameters are used (please refer to the standard OpenGL docu-
mentation if you are unfamiliar with the terms).

Near clip plane distance

Far clip plane distance

Width

Height

Height
Aspect= Width

Eye point

view up
Vertical field of view

view direction

The default values are:

ncp= 0.1;
fcp= 1000.0;
fov= 60;
aspect= same as the window

Section A.3 describes how the perspective view parameters can be changed at run-time.

6.2.2 Specifying an orthogonal view

An orthogonal projection is specified using mav windowOrthogonalSet (MFS p 235):

void mav_windowOrthogonalSet(MAV_window *w, float ncp, float fcp, float size,
float aspect);

w, ncp, fcp and aspect are described above. size is the vertical extent, in application units, of the
orthogonal projection.

6.2.3 Stereo viewing

Hardware

There are basically two ways of achieving stereo output both of which are supported by MAVERIK.
The first is to create two separate windows, one for the left eye view the other for the right eye view,
and employ some hardware, such as SGI’s multi-channel option, to generate separate video signals
for each window. The other method is to use a stereo graphics context, more commonly known as
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quad-buffer stereo. Modern LCD shutter glasses typically use quad-buffer stereo (the older interlaced
type of shutter glasses can be supported by using two separate windows carefully positioned such that
they completely overlap when the monitor is in stereo mode).

Software

The first step to achieve stereo output is to request a pair of windows be opened by mav initialise,
one for the left eye view the other for the right eye view (while for quad-buffer stereo only one win-
dow is actually opened, conceptually the left and right buffers/views are addressed separately). This is
achieved by setting the MAVERIK global variable mav opt stereo (see Section C.1.3, page 160) be-
fore the initialisation call. Acceptable values are MAV STEREO TWO WINS and MAV STEREO QUAD BUFFERS:

mav_opt_stereo= MAV_STEREO_TWO_WINS;
mav_initialise(&argc, argv);

The two views are associated with a single set of stereo parameters, which by default is mav stp default,
the contents of which defines the offset between the left and right eye views. The default implemen-
tation of stereo viewing, as described here, produces two parallel views of the virtual environment
offset by some amount. There is no view convergence. We will discuss in Chapter 11.2 (page 116)
how users can define their own methods of stereo viewing.

The stereo offset is set as follows:

/* Define stereo parameters, i.e. the stereo offset */
mav_stp_default.offset= 0.5;

The eye point in the left and right views is offset from its original position along the view right
vector by an amount � offset 
 2 	 0 and � offset 
 2 	 0 respectively. Unlike navigation, this offset is only
temporary and does not affect the values stored in the view parameters.

MAVERIK provides some keyboard function keys for fine-tuning stereo views at run-time. These are
described in Section A.3 (page 128).

An example of stereo viewing can be found in the stereo sub-directory of the miscellaneous exam-
ples.

Note that in a quad-buffer setup there is usually only one depth buffer which is shared by the two
views. MAVERIK clears the depth buffer as each view becomes active for rendering. This means that
all of one view must be rendered before all of the other view – you cant swap between them more than
once per frame. Some machines support separate depth buffers and this can be indicated by setting
mav opt stereo to be MAV STEREO QUAD BUFFERS SEPARATE Z.
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6.2.4 Background colour

When a new window is created, its background colour is set by default to RGB value (0.0, 0.5, 1.0).
This can be changed using mav windowBackgroundColourSet (MFS p 226):

void mav_windowBackgroundColourSet(MAV_window *w, float r, float g, float b);

w is the window to set, and r, g and b specify the required RGB background colour.

6.2.5 Backface culling

By default, backface culling is disabled. It can be set using mav windowBackfaceCullSet (MFS
p 225):

void mav_windowBackfaceCullSet(MAV_window *w, int v);

Setting v to MAV TRUE enables backface culling; MAV FALSE disables it. Vertices must be ordered
anti-clockwise around the normal for backface culling to work.

6.2.6 Opening multiple windows

mav windowNew (MFS p 234) opens a new window, and returns its handle:

MAV_window *mav_windowNew(int x, int y, int w, int h, char *name, char *disp);

where x, y, w and h specify the window’s horizontal and vertical position on screen, and its width and
height. name defines the window title that appears in the menu bar. disp is the name of the X display
on which to open the window (setting the value to NULL uses the DISPLAY environment variable).
Note, the window manager may not honor the requested parameters.

Windows are of X resource class “MaverikApp”. This can be used to control various window at-
tributes, such as the amount of window decoration and borders. For example, adding the line
4Dwm*MaverikApp*clientDecoration: none to the .Xdefaults file will open a window without
any decoration when using SGI’s default window manager 4Dwm.

An example of opening multiple windows be found in the windows sub-directory of the miscellaneous
examples.



6.2. WINDOWS 65

6.2.7 Deleting windows

mav windowDelete (MFS p 228) deletes a window:

void mav_windowDelete(MAV_window *w);

N.B. You can not delete the first window opened, only subsequently opened windows, since the initial
window creates data which other windows share.

An example of deleting windows be found in the windows sub-directory of the miscellaneous exam-
ples.
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Chapter 7

Creating new classes of object

As we discussed in Chapter 2, the needs of, say, an application involved in architectural walkthroughs
are quite different from one involved in abstract data visualization. Rather than trying to create a
compromise system, our approach is to design a system that can be fully and easily customized so
that the resultant virtual environment exhibits a behaviour which is customized to, and consistent
with, the nature of the application.

This is a fundamental concept of MAVERIK and one which sets it apart from other VR systems. A key
aspect in achieving this is the ability to create new object primitives tailored to the application.

For example, an application wishing to populate a virtual environment with particle systems which
model smoke or fire, will probably want to represent this with its own object primitives which are
defined and rendered in a particular way, rather than attempting to map its particles onto – say – the
MAVERIK “sphere” object.

The objects MAVERIK provides such as box, sphere, polygon, and so on (see Appendix B for a full
list), should be seen as (hopefully useful) defaults. Applications are under no obligation to use any of
these objects.

An application can use whatever data structure it likes to represent an object. We use the term
“object” as simply a convenient way of naming something which an application requires MAVERIK

to treat as an entity. To take an example from a real project in which MAVERIK has been used
extensively, an existing Computer-Aided Design application from the oil industry might wish to use a
“pipe” primitive, which in addition to geometrical data, also contains non-geometric information such
as the temperature and pressure of the liquid it carries.

To use such a data-rich primitive with a “traditional” VR system is very difficult. The pipe’s geomet-
rical data would typically have to be re-cast into a form dictated by the VR system – often polygon
or solid primitive based. While the non-geometric information can be incorporated into “traditional”
VR systems, it is usually in the form of “passive” data. Here, the data can not be exploited to affect,
for example, the rendering or collision detection functions since these are buried deep in the system
where the user has little or no access to them. Furthermore, importing application data into a VR
system means there are two separate copies of the same underlying data. Keeping these two sets of
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data synchronized is problematic.

With MAVERIK this is not the case – whatever data structure you choose to use to represent the pipe
primitive can be used directly – without modification – by MAVERIK. For example, the data structure
can be exactly the same as that required by an existing automated pipe routing algorithm that you wish
to use to give your virtual environment a realistic behavior. Furthermore, since MAVERIK is a toolkit
which is linked into your application, and not a separate executable, it can process the application data
directly rather than requiring its own copy.

The user has full control of how the object is processed by MAVERIK, and so all of the information in
the data structure can be used to customize the virtual environment to a specific application.

In this chapter, we describe how an application can define new classes of objects.

7.1 Example 9: creating a new class

An application defines a separate class for each kind of object it wishes MAVERIK to manipulate. It
also defines a set of methods which operate on that class. Some of these methods are required by
MAVERIK, if it is to be able to manage the object in a virtual environment – methods such as “draw
object”; other methods will only ever be used by the application itself.

We begin with a simple generic example. Suppose an application uses the following data structure to
represent an object, and creates an instance of it:

/* The data structure to represent the AppObject */
typedef struct {
char *name;

} AppObject;

AppObject app_object; /* Create the instance */

app_object.name= "I’m an object";

To use this object with MAVERIK, the application first needs to call mav classNew (MFS p 267) to
create a new MAVERIK class to represent it:

MAV_class *AppObjectClass;

/* Create a new Maverik class to represent the object */
AppObjectClass= mav_classNew ();

The next step is to register the application object as a MAVERIK object of the class we’ve just created,
as follows:
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MAV_object *obj;

/* Register the AppObject as a Maverik object */
obj= mav_objectNew (AppObjectClass, &app_object);

This is exactly the same mechanism as when registering an object which is one the MAVERIK default
object classes as seen in the previous examples. The mav objectNew function takes two arguments:
the name of the object’s class (AppObjectClass), and a pointer to the data structure defining the
object (&app_object). It’s sometimes helpful to think of mav objectNew as binding the object’s
data to the MAVERIK object instance.

7.2 Object methods

Every class of MAVERIK object has two components: a data structure, and a set of methods which
operate on the data structure. This is analogous to the object-oriented paradigm of data and methods,
however it is implemented in C using callback functions.

Normally, MAVERIK arranges to execute the methods (or callback functions) at an appropriate time
– the “draw” method for a particular class of object, for example, will be executed when MAVERIK

encounters an instance of that class of object in an SMS which is being processed for display.

The draw method for an object class, MAV callbackDrawFn (MFS p 45), has the following prototype:

typedef int (*MAV_callbackDrawFn) (MAV_object *, MAV_drawInfo *);

This is how an application defines a draw method, which MAVERIK will execute every time it wishes
to draw an AppObject object:

/* Draw an AppObject */
int AppObjectDraw (MAV_object *o, MAV_drawInfo *di)
{
/* Convert from generic Maverik object to the AppObject object */
AppObject *a= (AppObject *) mav_objectDataGet(o);

/* This would normally be the graphics code to draw the object */
printf("Drawing AppObject whose name is %s\n", a->name);

return MAV_TRUE;
}

AppObjectDraw is executed with the MAVERIK object to draw, o, and a set of so-called “drawing
information”, di. The generic MAVERIK object, o, has to be converted into the AppObject object so
the function can access its data to render it. This is achieved using the mav objectGetData function
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and is exactly the same process as seen with event-based callbacks for the “default” MAVERIK object
classes.

The MAV drawInfo (MFS p 66) data structure contains such information as the view clip planes and
the eye point, and can be used to apply level of detail or fine culling on the object. We’ll ignore this
argument until Section 7.9.

The return value of the function indicates if the operation was successfully completed or not (for this
simple example there is no reason why it should fail).

The draw callback is registered with MAVERIK using mav callbackDrawSet (MFS p 264), as fol-
lows:

/* Set the draw callback for the new class */
mav_callbackDrawSet(mav_win_all, AppObjectClass, AppObjectDraw);

which sets the draw callback for a particular class of object to be a particular function. Note that this
is set on a per-window basis so that the object could be rendered, for example, as wireframe in one
window and as filled in another.

The full example, eg9.c, looks like this:

/* eg9.c */
#include "maverik.h"
#include <stdio.h>

/* The data structure to represent the AppObject */
typedef struct {

char *name;
} AppObject;

/* Define an AppObject */
void defAppObject(AppObject *a)
{

a->name= "I’m an object";
}

/* Draw an AppObject */
int AppObjectDraw(MAV_object *o, MAV_drawInfo *di)
{

/* Convert from generic Maverik object to the AppObject object */
AppObject *a= (AppObject *) mav_objectDataGet (o);

/* No code for drawing the object -- this would normally be graphics! */
printf("Drawing AppObject whose name is %s\n", a->name);

return MAV_TRUE;
}
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/* Render a frame */
void drawFrame(MAV_SMS *sms)
{

/* Check for and act on any events */
mav_eventsCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Display the SMS in all windows */
mav_SMSDisplay(mav_win_all, sms);

/* Request end of the frame */
mav_frameEnd();

}

int main(int argc, char *argv[])
{

MAV_class *AppObjectClass;
AppObject app_object;
MAV_object *obj;
MAV_SMS *sms;

/* Initialise the Maverik system */
mav_initialise(&argc, argv);

/* Create a new Maverik class to represent the object */
AppObjectClass= mav_classNew();

/* Set the draw callback for the new class */
mav_callbackDrawSet(mav_win_all, AppObjectClass, AppObjectDraw);

/* Define an instance of the AppObject */
defAppObject(&app_object);

/* Register the AppObject as a Maverik object */
obj= mav_objectNew(AppObjectClass, &app_object);

/* Create an SMS and add the object to it */
sms= mav_SMSObjListNew();
mav_SMSObjectAdd(sms, obj);

/* Rendering loop */
while (1) drawFrame(sms);

}

Executing this example you should see the standard blue background with the message “Drawing
AppObject whose name is I’m an object” scrolling up the shell window. This example is intended to
show the general principles involved without getting bogged down in an actual implementation. We’ll
now move on to show how a real 3D object would be created.
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7.3 Example 10: the dodecahedron

To illustrate what’s involved in defining the kind of realistic new object class that applications might
wish to use, we present a worked example. We’ll define a “dodecahedron” object – the fourth of the
five platonic solids, comprising 12 faces, each of which is a pentagon.

We’ll take as our starting point the default MAVERIK object class “box”, whose data structure is as
follows:

typedef struct {
MAV_vector size; /* size of box */
MAV_surfaceParams *sp; /* surface parameters */
MAV_matrix matrix; /* transformation matrix */
void *userdef; /* user-defined data */

} MAV_box;

Our dodecahedron will be similar, but we’ll specify its size using a single radius parameter:

typedef struct {
float r; /* size of dodecahedron */
MAV_surfaceParams *sp; /* surface parameters */
MAV_matrix matrix; /* transformation matrix */

} MAV_dodec;

Note that we have retained the sp and matrix fields and that the name of the data structure starts with
MAV . We’ll briefly describe why these choices were made.

7.3.1 Data structure choices

We’ve said that applications are under no obligation to use MAVERIK’s data types, but in many cases
this is the most convenient approach.

Most objects an application wishes to manage in a virtual environment will have a position/orientation
and colour. Whatever is used to represent or calculate these, they ultimately have to be turned into
calls which change the state of the underlying graphics system, for example OpenGL.

MAVERIK provides an easy and transparent means of achieving this, but at the cost of using its data
types to represent these common object properties – MAV matrix for coordinate transformations, and
MAV surfaceParams to control the “colour” which is used for rendering.

If an application is free to choose any data structure for object classes, then using the MAVERIK data
types will make life a lot easier. If, on the other hand, it must represent objects using some fixed data
structure, then while this is possible, it involves the application writing certain operations for itself.

We will return to this subject in Section 7.4 to show how the dodecahedron could be re-written so as
not to use any MAVERIK data types.
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7.3.2 Naming conventions

Naming the dodecahedron data structure MAV dodec makes it appear to be part of the MAVERIK

system and not an additional object created just for this application. In this section we explain the
significance of this.

The MAVERIK system comprises a kernel and a number of so-called “supporting modules”. At the
kernel level there is surprisingly little – no objects, no input devices, no navigation, not even the
concept of rendering an object. What the kernel does provide, however, is a framework in which these
can be defined.

The supporting modules use this framework to provide the support for building applications. For
example, one module provides mouse and keyboard input; another provides the ability to define a
rendering callback; another defines the default graphical primitive classes, and so on.

Therefore what we have until now called “default” MAVERIK objects are not part of the MAVERIK

kernel. They have been added afterwards in just the same manner as shown in eg9 for the generic
object and we are about to see for the dodecahedron.

Furthermore, the supporting modules are extensible. If the dodecahedron object turns out to be useful,
it can be encapsulated in a supporting module and added to the MAVERIK system (we will show how
this is achieved in Chapter 12). It would then appear to another user just as much a part of MAVERIK

as the MAV box or MAV sphere are. With this in mind it makes sense to use a consistent naming
scheme when defining new objects. Of course, this is not a requirement. If your object is so specific
to a particular application that its of no possible use to anyone else, call it what you want. It’s a fine
point.

Back to the dodecahedron.

The following example, eg10.c, adds the dodecahedron object in the same manner as shown for the
generic object in Example 9, but actually implements the rendering of this shape in the draw callback.

/* eg10.c */
#include "maverik.h"
#include <math.h>

/* The data structure and object class to represent the dodecahedron */
typedef struct {

float r;
MAV_surfaceParams *sp;
MAV_matrix matrix;

} MAV_dodec;

MAV_class *mav_class_dodec;

/* The vertices of a unit sized dodecahedron */
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#define V1 0.381966
#define V2 0.618034

MAV_vector vecs[]={{-V1,0,1},{V1,0,1},{-V2,-V2,-V2},{-V2,-V2,V2},{-V2,V2,-V2},{-V2,V2,V2},
{V2,-V2,-V2},{V2,-V2,V2},{V2,V2,-V2},{V2,V2,V2},{1,V1,0},{1,-V1,0},{-1,V1,0},{-1,-V1,0},
{-V1,0,-1},{V1,0,-1},{0,1,V1},{0,1,-V1},{0,-1,V1},{0,-1,-V1}};

/* Routine to render a pentagon given the vertices and size r */
void pentagon(int a, int b, int c, int d, int e, float r)
{

MAV_vector v1, v2, norm;

/* Calculate normal of pentagon from crossproduct of the 2 edges */
v1= mav_vectorSub(vecs[a], vecs[b]);
v2= mav_vectorSub(vecs[b], vecs[c]);
norm= mav_vectorNormalize(mav_vectorCrossProduct(v1, v2));

/* Render the pentagon as a polygon. Vecs contain unit pentagon, so mult by r */
mav_gfxPolygonBegin();
mav_gfxNormal(norm);
mav_gfxVertex(mav_vectorScalar(vecs[a], r));
mav_gfxVertex(mav_vectorScalar(vecs[b], r));
mav_gfxVertex(mav_vectorScalar(vecs[c], r));
mav_gfxVertex(mav_vectorScalar(vecs[d], r));
mav_gfxVertex(mav_vectorScalar(vecs[e], r));
mav_gfxPolygonEnd();

}

/* Routine to render the dodecahedron */
int mav_dodecDraw(MAV_object *o, MAV_drawInfo *di)
{

MAV_dodec *dodec;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_objectDataGet(o);

/* Set the correct colouring */
mav_surfaceParamsUse(dodec->sp);

/* Store the current transformation matrix then multiply it by the local transformation */
mav_gfxMatrixPush();
mav_gfxMatrixMult(dodec->matrix);

/* Render the 12 pentagons that make up the dodecahedron */
pentagon(0, 1, 9, 16, 5, dodec->r);
pentagon(1, 0, 3, 18, 7, dodec->r);
pentagon(1, 7, 11, 10, 9, dodec->r);
pentagon(11, 7, 18, 19, 6, dodec->r);
pentagon(8, 17, 16, 9, 10, dodec->r);
pentagon(2, 14, 15, 6, 19, dodec->r);
pentagon(2, 13, 12, 4, 14, dodec->r);
pentagon(2, 19, 18, 3, 13, dodec->r);
pentagon(3, 0, 5, 12, 13, dodec->r);
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pentagon(6, 15, 8, 10, 11, dodec->r);
pentagon(4, 17, 8, 15, 14, dodec->r);
pentagon(4, 12, 5, 16, 17, dodec->r);

/* Restore original transformation matrix */
mav_gfxMatrixPop();

return MAV_TRUE;
}

/* Define a dodecahedron */
void defDodec(MAV_dodec *d)
{

d->r=2.5;
d->sp= mav_sp_default;
d->matrix= MAV_ID_MATRIX;

}

/* Render a frame */
void drawFrame(MAV_SMS *sms)
{

/* Check for and act on any events */
mav_eventsCheck();

/* Request start of a new frame */
mav_frameBegin();

/* Display the SMS in all windows */
mav_SMSDisplay(mav_win_all, sms);

/* Request end of the frame */
mav_frameEnd();

}

int main(int argc, char *argv[])
{

MAV_dodec dodec;
MAV_object *obj;
MAV_SMS *sms;
float r=0;

/* Initialise the Maverik system */
mav_initialise(&argc, argv);

/* Create a new class to represent the dodecahedron */
mav_class_dodec= mav_classNew();

/* Set the draw callback for this new class */
mav_callbackDrawSet(mav_win_all, mav_class_dodec, mav_dodecDraw);

/* Define a dodecahedron */
defDodec(&dodec);
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/* Register the dodecahedron as a Maverik object */
obj= mav_objectNew(mav_class_dodec, &dodec);

/* Create a SMS */
sms= mav_SMSObjListNew();

/* Add object to SMS */
mav_SMSObjectAdd(sms, obj);

/* Use default mouse navigation */
mav_navigationMouse(mav_win_all, mav_navigationMouseDefault);

/* Rendering loop */
while (1) {
/* Spin the dodecahedron */
r+=1;
dodec.matrix= mav_matrixSet(r,r*2,r/2, 0,0,0);

/* Draw a frame */
drawFrame(sms);

}
}

Running this example should show a tumbling red dodecahedron. The tumbling effect is achieved
by setting the object’s transformation matrix at each frame with the function mav matrixSet. This
function returns a transformation matrix defined by a roll, pitch, yaw orientation (the first 3 arguments
in degrees) and (x, y, z) position (the remaining 3 arguments). Note: roll, pitch and yaw are arbitrarily
chosen to be rotations about the Z, X and Y axis respectively.

We’ll now look at the draw callback function, mav dodecDraw, in more detail. The first action per-
formed with the dodecahedron data structure is to use the correct set of surface parameters, achieved
with:

/* Set the correct colouring */
mav_surfaceParamsUse(dodec->sp);

This sets the underlying graphics system to be in a correct state to render the object as desired, such
as enabling lighting, disabling texturing, and so on.

The next action is then to render the shape. In common with many graphics systems, MAVERIK uses
the notion of a modelview matrix which can be pushed, popped, set and multiplied to change between
coordinate frames. This idea should be familiar to anyone with a working knowledge of OpenGL (the
level of reader we are assuming).

/* Store the current transformation matrix -
then multiply it by the local transformation */

mav_gfxMatrixPush();
mav_gfxMatrixMult(dodec->matrix);
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/* Render the 12 pentagons that make up the dodecahedron */
[code removed]

/* Restore original transformation matrix */
mav_gfxMatrixPop();

7.3.3 Abstracted graphics layer

Any function that starts with mav gfx is part of MAVERIK’s abstracted graphics layer. In reality this
is little more than a wrapper to OpenGL. For the calls above:

mav gfxMatrixPush (MFS p 271) is equivalent to glPushMatrix
mav gfxMatrixMult (MFS p 271) is equivalent to glMultMatrixf
mav gfxMatrixPop (MFS p 271) is equivalent to glPopMatrix

MAVERIK uses this abstracted graphics layer to hide the specifics of the underlying graphics systems
thus allowing application source code to be simply re-linked, not re-written, to make use of different
graphics systems.

The default MAVERIK library resolves the abstracted graphics layer into their OpenGL equivalents.
However, MAVERIK can be configured to resolves this layer into DirectX calls or, although now
unsupported, IrisGL calls. It is even possible to configure MAVERIK to resolve the layer without
making any graphical calls at all! (which could be used in making an offline application such as a
raytracer which used MAVERIK’s object and spatial management algorithms).

It is hoped that this mechanism could be used to support other immediate mode rendering systems of
similar specification to OpenGL.

That said, there is nothing stopping the user from placing direct OpenGL calls in the rendering call-
back functions. Obviously, doing this would then rule out the possibility of using the other graphics
systems described above.

The 20 vertices which make up a unit-sized dodecahedron are stored as an array of vectors. Twelve
pentagons can be defined, using a combination of these vertices, to render the dodecahedron. Before
rendering each vertex is multiplied by the dodecahedron’s radius so that it has the correct size. (The
rendering of this shape was borrowed, with gratitude, from the GLUT source code.)

Note the use of MAVERIK’s abstracted graphics layer:

mav gfxPolygonBegin (MFS p 272) is equivalent to glBegin(GL POLYGON)
mav gfxNormal (MFS p 272) is equivalent to glNormal3f
mav gfxVertex (MFS p 272) is equivalent to glVertex3f
mav gfxPolygonEnd (MFS p 272) is equivalent to glEnd

As with any other graphics system a surface normal must be defined for the pentagon so as it will
appear correctly lit. This is trivially calculated as the cross product of two edges.
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7.4 Application independence

In the dodecahedron example, we used MAVERIK types for some of the object data fields:

MAV_surfaceParams *sp;
MAV_matrix matrix;

As mentioned previously, an application is under no obligation whatsoever to use MAVERIK data
types (although life is lot simpler if it does).

For example, instead of using a MAV matrix to define an object’s position and orientation we could
use x, y and z, and roll, pitch and yaw to define it.

In the rendering callback we would then need to replace the line:

mav_gfxMatrixMult(dodec->matrix);

with

mav_gfxMatrixMult(mav_matrixSet(dodec->roll, dodec->pitch, dodec->yaw,
dodec->x, dodec->y, dodec->z));

where the function mav matrixSet defines a transformation matrix with that orientation and position.
The principle here is that whatever form the position/orientation data takes it must be converted into,
but not necessarily stored in the data structure as, a MAV matrix in order for it to be applied to the
underlying graphics system.

Since Euler angles are a popular means of defining orientation, MAVERIK provides support for con-
verting them into a MAV matrix. However, if your orientation was in a more exotic form (the Euler
angles being represented by integers in the range 0–255, or by using quaternions, for example) then
you have to perform the mathematics of the conversion into a MAV matrix yourself.

Similarly, an object’s colour could, for example, be defined using a single colour index rather than
a MAVERIK surface parameters datatype. Again, regardless of how the colour is stored it can be
converted into a MAVERIK surface parameters data type in the rendering callback function and applied
in the usual manner. For example:

MAV_surfaceParams sp;

sp.mode= MAV_COLOUR;
sp.colour= dodec->colIndex;
mav_surfaceParamsUse(&sp);



7.5. EXAMPLE 11: THE “BOUNDING BOX” METHOD 81

where the appropriate RGB values for the colour are defined elsewhere. You do not necessarily have
to use the mav surfaceParamsUse (MFS p 291) function to define the colouring scheme of an object.
You can, if you wish, make direct calls to OpenGL to set the correct state. However, if you do this you
must call the function mav surfaceParamsUndefine (MFS p 290) so as to notify MAVERIK that its
internal notion of the state of the graphics system is no longer valid.

7.5 Example 11: the “bounding box” method

The bounding box (BB) method computes an axis-aligned bounding box for an object taking into
account the object’s transformation, but not any additional transformations that may have been applied
– only one level of transformation is taken into account in the calculation. Put another way, in the
examples so far the objects would return a world coordinate frame BB whereas if they were the sub-
object in a hierarchical structure then they would return a BB in the coordinate frame of the parent
object which would then transform this into the world coordinate frame.

The BB of an object is used by MAVERIK to determine two things. First, if the object is within the
view frustum and therefore should be displayed (that is, have its draw callback executed). Second, to
determine which object the mouse was pointing at when a keyboard or mouse event occurred. Note
that if the BB computation is a “bad fit” to the actual shape of the object, MAVERIK may incorrectly
report selections since the mouse may be pointing outside of the object but could still be within its
BB. We will show in the next section how to perform accurate object selection.

The BB method for an object, MAV callbackBBFn (MFS p 42), has the following prototype:

typedef int (*MAV_callbackBBFn) (MAV_object *, MAV_BB *);

The callback function takes as its first argument the MAVERIK object to be processed and returns the
calculated BB in the second argument. The MAV BB (MFS p 5) datatype comprises two MAV vectors,
min and max, to define the BB’s extent. As with the draw callback, the return value indicates the
success or failure of the operation.

The dodecahedron BB is calculated as follows:

int mav_dodecBB (MAV_object *o, MAV_BB *bb)
{
MAV_dodec *dodec;
MAV_BB local;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_objectDataGet (o);

/* Local coordinate frame axis-aligned bounding box */
local.min.x= -dodec->r;
local.min.y= -dodec->r;
local.min.z= -dodec->r;
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local.max.x= dodec->r;
local.max.y= dodec->r;
local.max.z= dodec->r;

/* Align local coordinate frame with the parent (in this case the world) frame */
mav_BBAlign (local, dodec->matrix, bb);

return MAV_TRUE;
}

The BB of the dodecahedron in its local coordinate frame is a box centered at the origin and of extent
twice the dodecahedron radius. The function mav BBAlign (MFS p 243) calculates the axis-aligned
BB in one coordinate frame, bb, given the BB defined in a different coordinate frame, local, and the
transformation matrix between the two (the second argument). If you didn’t store the dodecahedron’s
orientation and position as a MAVERIK matrix you would either have to convert it into one, or perform
the maths to convert between the two coordinate frames yourself.

Obviously, this is just one way in which an axis-aligned BB can be calculated. Another method would
be as follows:

int mav_dodecBB2 (MAV_object *o, MAV_BB *bb)
{
MAV_dodec *dodec;
int i;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_objectDataGet (o);

/* Find BB enclosed by the points after size and position of */
/* dodec have been accounted for */
mav_BBCompInit (bb);
for (i=0; i<20; i++) {

mav_BBCompPt (mav_vectorMult(mav_vectorScalar(vecs[i], dodec->r), dodec->matrix),
bb);

}

return MAV_TRUE;
}

In this implementation the 20 vertices which make up the dodecahedron are first multiplied by the
scalar dodec->r to give a dodecahedron of the correct size, and then by the MAVERIK matrix dodec->matrix
to give their position in the world coordinate frame.

Allied to this calculation are the functions mav BBCompInit (MFS p 243) and mav BBCompPt (MFS
p 243). These functions are used when calculating a bounding box which comprises a collection of
points. The second of these functions takes a vector and a pointer to a bounding box and modifies the
contents of the bounding box so that it encompasses the vector. The first function simply initialises
the contents of the BB.
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These two implementations both perform the same job but have different advantages and disadvan-
tages. The first method is quicker but overestimates the BB. Whereas the second method is slower but
more accurate than the first.

Initially the first method is used and set using mav callbackBBSet (MFS p 264) as follows:

/* Set the calculate BB callback for this new class */
mav_callbackBBSet (mav_win_all, mav_class_dodec, mav_dodecBB);

However, MAVERIK allows callback functions to be dynamically switched. In this example we define
a keyboard event callback to switch the bounding box functions:

MAV_callbackBBFn fn;

if (ke->key==’b’) { /* Toggle calc BB callback function */
fn= (MAV_callbackBBFn) mav_callbackQuery (mav_callback_BB, mav_win_all, o);
if (fn==mav_dodecBB)
{

mav_callbackBBSet (mav_win_all, mav_class_dodec, mav_dodecBB2);
}
else
{

mav_callbackBBSet (mav_win_all, mav_class_dodec, mav_dodecBB);
}

}

The function mav callbackQuery (MFS p 296) has the prototype:

MAV_callbackFn mav_callbackQuery (MAV_callback *cb, MAV_window *w, MAV_object *o);

and returns which callback function is set for callback cb in window w for the object o. This is returned
as a generic callback function (MAV callbackFn (MFS p 48)) and has to be cast to a BB callback
function (MAV callbackBBFn) in order for a comparison to be performed. The function returns NULL
if no callback function has been set. A list of the callback handles for the different operations can be
found in Section C.3 (the BB callback is identified with mav callback BB; the draw callback with
mav callback draw etc...).

To show the effects of view frustum culling, a printf has been added to the draw callback in eg11 to
indicate when it’s being called. In addition, the BB callback for the dodecahedron is explicitly called
and the calculated BB displayed. This is achieved with the functions mav callbackBBExec (MFS
p 263) and mav BBDisplay (MFS p 123) whose prototypes are:

int mav_callbackBBExec (MAV_window *w, MAV_object *o, MAV_BB *bb);
void mav_BBDisplay (MAV_window *w, MAV_BB bb);
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Execution of the BB callback is analogous to that described for the “get surface parameters” process-
based callback in eg7 (page 40). The second function simply renders, in black wireframe, the given
BB in the given window.

Although not an issue in this example, suppose we added the dodecahedron to the SMS as follows:

mav_SMSObjectAdd (sms, mav_objectNew (mav_class_dodec, &dodec));

i.e. not noting the relationship between the application dodecahedron object and MAVERIK object.
How then could we execute the BB callback on the dodecahedron since we don’t know its correspond-
ing MAVERIK object?

The reverse conversion (MAVERIK object to application object) is trivial, and performed by the func-
tion mav objectDataGet. Conversion the other way (application object to MAVERIK object) is per-
formed with the function mav objectDataWith (MFS p 174) which takes as its only argument a void
pointer to the application object data structure and returns the MAVERIK object which corresponds
with that data, or NULL if the data has not been registered. The call to execute the BB callback in this
example is peformed as follows to demonstrate this:

mav_callbackBBExec (mav_win_current, mav_objectDataWith (&dodec), &bb)

Running eg11 shows the tumbling dodecahedron surrounded by its BB. Pressing ‘b’ over the dodec-
ahedron toggles which implementation is used for calculating the BB, while ‘s’ increases its size, and
‘q’ quits. Note how the messages printed to the shell window stop when the navigation takes the
dodecahedron outside of the view frustum.

7.6 Example 12: the “intersection” method

Although a BB is enough for MAVERIK to perform rough-and-ready selection testing, a preferable
approach is to define a method which accurately computes the intersection (if any) of an instance of
the object class with a given vector.

The intersection method for an object, MAV callbackIntersectFn (MFS p 53), has the following
prototype:

typedef int (*MAV_callbackIntersectFn)(MAV_object *, MAV_line *,
MAV_objectIntersection *);

The callback function takes as it arguments the MAVERIK object to process, the line with which to
calculate the intersection with and a data structure in which to return the details of the intersection.

A MAV line (MFS p 18) data structure consists of a two MAV vectors: the origin of the line, pt, and
normalized direction vector, dir, which are defined in the world coordinate frame. The MAV objectIntersection
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data structure contains a number of fields but only one is currently used, namely pt1 – the distance
from the line’s origin to the first point of intersection with the object.

If the line does not intersect the object then pt1 should be set to a negative value and the callback
function returns MAV FALSE. Conversely, it should return MAV TRUE if the line does intersect the object.
If the point originates inside the object, then the distance to closest intersection should be set to zero.

We define the intersection method for the dodecahedron as follows:

/* Function to calculate the object-line intersection of a pentagon */
void pentagonIntersect (MAV_line ln, MAV_objectIntersection *oi,

int a, int b, int c, int d, int e, float r)
{
MAV_polygon apoly;
MAV_vector v1, v2, norm;

/* Calculate normal of pentagon from crossproduct of the 2 edges */
v1= mav_vectorSub (vecs[a], vecs[b]);
v2= mav_vectorSub (vecs[b], vecs[c]);
norm= mav_vectorNormalize (mav_vectorCrossProduct (v1, v2));

/* Make up a MAV_polygon to represent the pentagon */
apoly.np= 5;
apoly.norm= norm;
apoly.vert= mav_malloc (apoly.np*sizeof (MAV_vector));
apoly.vert[0]= mav_vectorScalar (vecs[a], r);
apoly.vert[1]= mav_vectorScalar (vecs[b], r);
apoly.vert[2]= mav_vectorScalar (vecs[c], r);
apoly.vert[3]= mav_vectorScalar (vecs[d], r);
apoly.vert[4]= mav_vectorScalar (vecs[e], r);
apoly.matrix= MAV_ID_MATRIX;

/* Calculate line-polygon intersection */
mav_linePolygonIntersection (&apoly, ln, oi);

/* Free up polygon vertex memory */
mav_free (apoly.vert);

}

/* Function to calculate the object-line intersection of the dodecahedron */
int mav_dodecIntersect (MAV_object *o, MAV_line *ln, MAV_objectIntersection *oi)
{
MAV_dodec *dodec;
MAV_objectIntersection pentInt[12];
MAV_line ln2;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_objectDataGet (o);

/* Initialise object intersection data structure */
oi->pt1=-100.0;
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/* Rotate and translate line so that the dodecahedron
is centered and axis-aligned */

ln2= mav_lineTransFrame (*ln, dodec->matrix);

/* Intersect the 12 pentagons that make up the dodecahedron */
pentagonIntersect (ln2, &pentInt[0], 0, 1, 9, 16, 5, dodec->r);
pentagonIntersect (ln2, &pentInt[1], 1, 0, 3, 18, 7, dodec->r);
pentagonIntersect (ln2, &pentInt[2], 1, 7, 11, 10, 9, dodec->r);
pentagonIntersect (ln2, &pentInt[3], 11, 7, 18, 19, 6, dodec->r);
pentagonIntersect (ln2, &pentInt[4], 8, 17, 16, 9, 10, dodec->r);
pentagonIntersect (ln2, &pentInt[5], 2, 14, 15, 6, 19, dodec->r);
pentagonIntersect (ln2, &pentInt[6], 2, 13, 12, 4, 14, dodec->r);
pentagonIntersect (ln2, &pentInt[7], 2, 19, 18, 3, 13, dodec->r);
pentagonIntersect (ln2, &pentInt[8], 3, 0, 5, 12, 13, dodec->r);
pentagonIntersect (ln2, &pentInt[9], 6, 15, 8, 10, 11, dodec->r);
pentagonIntersect (ln2, &pentInt[10], 4, 17, 8, 15, 14, dodec->r);
pentagonIntersect (ln2, &pentInt[11], 4, 12, 5, 16, 17, dodec->r);

/* Sort intersection and return appropriate value */
return (mav_objectIntersectionsSort (12, pentInt,

mav_matrixScaleGet (dodec->matrix), oi));
}

As with the draw and BB methods, the intersect method is registered and executed respectively using
mav callbackIntersectSet (MFS p 264) and mav callbackIntersectExec (MFS p 263).

We’ll now look at the implementation of the dodecahedron intersection function. The first action
taken is to initialise the pt1 field of the object intersection data structure, oi, to some negative value.
The next step is to transform the line, which is defined in the world coordinate frame, into the local
coordinate frame of the dodecahedron. The mathematics of intersecting almost any object with a line
is far easier if you can consider that object in its local coordinate frame, that is, centered at the origin
and axis-aligned. This is achieved with the function mav lineTransFrame (MFS p 277) which returns
a MAV line in the local coordinate frame given the world coordinate frame line and the transformation
matrix between the local and world frames.

Like the rendering function, the intersection function considers the dodecahedron as 12 separate pen-
tagons. It calculates the intersection with each of these and then sorts these to discover the closest
point of intersection if any. Since this type of process is relatively common, MAVERIK provides a
function, mav objectIntersectionsSort (MFS p 281), which performs this sort. Its prototype is:

int mav_objectIntersectionsSort (int nhits, MAV_objectIntersection *hits,
float scale, MAV_objectIntersection *res);

where nhits is the number of possible intersections, hits is the array of intersections, scale we will
address in a moment and res is where to place the closest, if any, intersection. The return value of
this function is MAV TRUE if an intersection exists, or MAV FALSE otherwise.

Since we are only interested in the distance to intersection, transforming the line between the two
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coordinate frames makes no difference to the result, providing that the transformation only involves
rigid body transformations such as translation and rotation.

If the transformation involves a scaling operation, then the distance to intersection has to be scaled
appropriately. This is the purpose of the scale field in the mav objectIntersectionsSort function.
It is simply multiplied to the pt1 value of the closest intersection to give the final value.

The scaling factor of a transformation matrix is returned by the function mav matrixScaleGet (MFS
p 278). Since MAVERIK only allows uniform scaling about the three axes, the single return value is
sufficient to define this.

The intersection of a line with a pentagon is performed by creating a MAV polygon (MFS p 21) to rep-
resent it. The MAVERIK polygon is fully described in Appendix B and comprises a number of points
np, a normal norm, and an array containing the vertices, vert. Once in this form, we can calculate
the line-polygon intersection with the function mav linePolygonIntersection (MFS p 276). Note
the use of mav malloc (MFS p 145) and mav free (MFS p 145) to allocate and release an area of
memory. These are little more than wrappers to the standard malloc and free system calls, but the
MAVERIK versions automatically check for malloc failing (stopping execution if it does) and keeps
track of the amount of memory allocated and released to help with debugging memory leaks.

On execution, this example will appear to be very similar to the previous one. However, with careful
positioning of the mouse is should be apparent that the keyboard event callback is only be executed
when the mouse is truly, and not approximately, over the dodecahedron. Note that the printf has
been removed from the rendering callback.

7.7 Example 13: other object callbacks

So far we have defined draw, calculate BB and calculate object-line intersection callbacks. The first
two of these can viewed as the sensible minimum callbacks which need to be provided for a new object
class. The third, while recommended, improves selection accuracy but does not add any intrinsically
new functionality.

There are 6 other callbacks an object can define (by “object” we mean “a specified instance of the
object class”):

� delete: called when an object is deleted giving you the opportunity to free any memory it used
for example. Callback function prototype, MAV callbackDeleteFn (MFS p 44):

typedef int (*MAV_callbackDeleteFn) (MAV_object *);

� identify: return an identifier string for the object. Callback function prototype, MAV callbackIDFn (MFS
p 52):

typedef int (*MAV_callbackIDFn) (MAV_object *, char **);
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� dump: print a summary of the object’s data structure to stdout. Callback function prototype,
MAV callbackDumpFn (MFS p 46):

typedef int (*MAV_callbackDumpFn) (MAV_object *);

� getUserdef: return a pointer to the user-defined data field of the object. Callback function
prototype, MAV callbackGetUserdefFn (MFS p 51):

typedef int (*MAV_callbackGetUserdefFn) (MAV_object *, void ***);

� getMatrix: return a pointer to the transformation matrix field of the object. Callback function
prototype, MAV callbackGetMatrixFn (MFS p 49):

typedef int (*MAV_callbackGetMatrixFn) (MAV_object *, MAV_matrix **);

� getSurfaceParams: return a pointer to the surface parameters field of the object. Callback
function prototype, MAV callbackGetSurfaceParamsFn (MFS p 50):

typedef int (*MAV_callbackGetSurfaceParamsFn) (MAV_object *, MAV_surfaceParams ***);

With the exception of delete, these callbacks are never executed by MAVERIK but rather by the appli-
cation itself. The identify and dump callbacks are basically for debugging purposes while the “get”
family of callbacks are used to obtain the data fields common to most objects. An example the “get
matrix” and “get surface parameters” callbacks was shown in eg7 to make the various objects “jump”
and change colour.

Example 13 extends Example 7 (page 40) to include the dodecahedron in the scene. The “get matrix”
and “get surface parameters” are implemented as follows so that the dodecahedron responds to the ‘j’,
‘c’ and ‘p’ keys to make it jump, change colour and be positioned by the mouse.

/* Function to return a pointer to the matrix field of the dodecahedron */
int mav_dodecGetMatrix(MAV_object *o, MAV_matrix **m)
{
MAV_dodec *dodec= (MAV_dodec *) mav_objectDataGet (o);

*m= &dodec->matrix;

return MAV_TRUE;
}

/* Function to return a pointer to the surfaceParams field of the dodecahedron */
int mav_dodecGetSurfaceParams (MAV_object *o, MAV_surfaceParams ***sp)
{
MAV_dodec *dodec= (MAV_dodec *) mav_objectDataGet (o);

*sp= &dodec->sp;

return MAV_TRUE;
}
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Note that the rendering function for a pentagon has been modified to give a texture coordinate to each
vertex. MAVERIK’s texture coordinate data type, MAV texCoord (MFS p 89), comprises two floats, s
and t. They are applied using the function mav gfxTexCoord (MFS p 272) which is analogous to the
OpenGL function glTexCoord2f. Using a set of textured surface parameters on an object which does
not define texture coordinates leads to undefined results.

The texture coordinates of a pentagon are arbitrarily chosen to be (sin(ang), cos(ang)) where ang
starts at 0 and increments by 72 degrees each vertex

�
72 � 360 
 5 � .

7.8 Example 14: redefining object callbacks

Of course there is nothing stopping you redefining the callbacks of the default MAVERIK objects to
be your own functions. Example 14 demonstrates this by taking Example 5 (page 35) and redefining
the draw callback for the box to be:

/* New box draw callback */
int myBoxDraw (MAV_object *o, MAV_drawInfo *di)
{
/* Print a message to the shell window */
printf ("In new box draw callback\n");

/* Call the original draw callback function to render the box */
mav_boxDraw (o, di);

return MAV_TRUE;
}

and this is set in the main function with:

/* Redefine draw callback for boxes */
mav_callbackDrawSet (mav_win_all, mav_class_box, myBoxDraw);

Obviously, we could have chosen to actually render the object in the new draw callback maybe using
triangles instead of quads for the surfaces since this may be quicker on some particular hardware
configuration.

The names of the functions which act as the callbacks to the MAVERIK objects are given in Section B.
A novel feature of MAVERIK is that the source code to these is available to the application program-
mer to inspect, copy and modify. The source code to the 19 MAVERIK objects can be found in the
src/objects sub-directory of the MAVERIK distribution. As mentioned previously, the MAVERIK

objects should be seen as “defaults”: hopefully useful as is and a good starting point for customization
when they don’t fit the application’s exact requirements.
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7.9 Example 15: using “drawing information”

Example 15 modifies Example 10 (page 74) to use the drawing information in the draw callback to
apply level of detail (LOD) in rendering the dodecahedron.

The MAVERIK drawing information data structure, MAV drawInfo, contains three fields: the view
frustum clip planes, cp (of data type MAV clipPlanes (MFS p 61)), the view parameters, vp, and a
user definable field, userdef.

The first of these fields could be used to determine which parts of an individual object are visible when
the object’s BB is only partially inside the view frustum. This, and the third field, would only be used
by advanced users.

It is the second field, the view parameters, which we shall use to apply LOD based on the distance of
the object from the eye position. Unfortunately, unlike a cylinder where you can change the faceting
accuracy, there is not a lot you can do to simplify a dodecahedron. Our approach, which is rather
contrived but shows the principles, is to define a new dodecahedron rendering callback as follows:

/* Function to render the dodecahedron with level of detail */
int mav_dodecDrawLOD (MAV_object *o, MAV_drawInfo *di)
{
MAV_dodec *dodec;
float dist;

/* Convert from generic Maverik object to the dodecahedron object */
dodec= (MAV_dodec *) mav_objectDataGet (o);

/* Calculate distance from eyepoint */
dist= sqrt (mav_vectorDotProduct (di->vp.eye, di->vp.eye));

if (dist<50)
{

/* Full detail */
mav_dodecDraw (o, di);

printf ("Full detail\n");
}
else if (dist<100)
{

/* Draw as sphere */
MAV_sphere s;
MAV_object so;

s.radius= dodec->r;
s.nverts= 4;
s.nchips= 4;
s.sp= dodec->sp;
s.matrix= dodec->matrix;

so.the_class= mav_class_sphere;
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so.the_data= &s;

mav_sphereDraw (&so, di);

printf ("Sphere\n");
}
else if (dist<150)
{

/* Wire frame draw */
mav_windowPolygonModeSet (mav_win_all, MAV_POLYGON_LINE);
mav_dodecDraw (o, di);
mav_windowPolygonModeSet (mav_win_all, MAV_POLYGON_FILL);

printf ("Wire frame\n");
}
else
{

printf ("Not drawing\n");
}

return MAV_TRUE;
}

The distance from the eye point to the center of the dodecahedron is calculated. This calculation is
only valid since the dodecahedron is centered at the origin. If it were not, then the draw information
could be translated into the local coordinate frame using the function mav drawInfoTransFrame (MFS
p 269):

MAV_drawInfo mav_drawInfoTransFrame (MAV_drawInfo in, MAV_matrix mat);

This is completely analogous to mav lineTransFrame and translates a MAV drawInfo data type be-
tween coordinate frames.

The LOD metric we apply is to render the dodecahedron in full detail if it is less than 50 units away; as
a sphere if the distance is greater than 50 but less than 100; a wireframe dodecahedron if the distance is
greater than 100 but less than 150; and not to draw it at all it if the distance is greater than 150. These
values are chosen to show, not hide, the changes. (And yes, we know, that the sphere is probably more
costly to render than the dodecahedron in full detail – but that isn’t the point!)

Note how a sphere is created to represent the dodecahedron. The function to render a sphere must be
called with a MAV object rather than directly with a MAV sphere (MFS p 28). We could of course
register the sphere as a MAVERIK object, render it, and then delete it, but this is wasteful. A better
solution is to implicitly create a temporary MAVERIK object filling in the required fields of this data
structure ourselves. MAV objects consist of two fields: a MAV class pointer, the class, to define the
methods which operate on the data portion, a void pointer the data (the “the ” is included to avoid
a clash with the class reserved keyword in C++). This type of MAVERIK object creation should be
used sparingly and strictly limited to the type of operation performed here, that is, where a temporary
object is required and used to perform a specific known task. You should never use MAVERIK objects
created in this manner to execute callbacks or add them to an SMS.
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The wireframe dodecahedron is drawn by toggling the state of the polygon mode using the function
mav windowPolygonModeSet (MFS p 237). (This is the same function called when pressing Shift-F8
to toggle between wireframe and filled mode).



Chapter 8

Customising navigation

In this chapter we illustrate how to write new navigator functions and detail exactly how navigation
events are detected and handled.

8.1 Navigator functions

Recall from Example 8 (page 48) that customization of the default mouse navigation behaviour is via
the function:

void mav_navigationMouseDefaultParams(MAV_window *w, int but,
MAV_navigatorFn x, float xls, float xas,
MAV_navigatorFn y, float yls, float yas);

A MAV navigatorFn (MFS p 76) has the following prototype:

typedef void (*MAV_navigatorFn)(MAV_viewParams *vp, float am, float ls, float as);

It modifies the contents of the view parameters, vp, by an amount, am. am is scaled by ls to convert it
in to application units in order to apply linear transformations; and by as to convert it in to radians in
order to apply rotational transformations.

The controlling code for the default mouse navigation, which we will describe in Section 8.4, executes
the appropriate horizontal and vertical navigator functions with an am equal to the distance in pixels
that the mouse has travelled in that direction.

It is easiest to illustrate navigator functions by looking at how some of the default navigator func-
tions are implemented. The source code for these can be found in the mav navigators.c in the
src/navigation sub-directory of the MAVERIK distribution.

mav navigateTransX (MFS p 161) simply modifies the X coordinate of the eye point:

93
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void mav_navigateTransX(MAV_viewParams *vp, float amount, float ls, float as)
{
/* x axis shift */
vp->eye.x += (amount*ls);

}

The two related navigator functions, mav navigateTransY (MFS p 161) and mav navigateTransZ (MFS
p 161), are similarly defined.

mav navigateForwards (MFS p 161) applies each of mav navigateTransX, mav navigateTransY
and mav navigateTransZ to move the eye point along the view direction vector:

void mav_navigateForwards(MAV_viewParams *vp, float amount, float ls, float as)
{
/* view direction shift */
mav_navigateTransX(vp, vp->view.x * amount, ls, as);
mav_navigateTransY(vp, vp->view.y * amount, ls, as);
mav_navigateTransZ(vp, vp->view.z * amount, ls, as);

}

mav navigateYaw (MFS p 161) illustrates how the view direction can be modified:

void mav_navigateYaw(MAV_viewParams *vp, float amount, float ls, float as)
{
/* yaw */
vp->view= mav_vectorRotate(vp->view, vp->up, amount*as);
vp->right= mav_vectorRotate(vp->right, vp->up, amount*as);

}

mav vectorRotate (MFS p 213) rotates the first parameter about the second by an amount given by
the third parameter in radians.

8.2 Example 16: simple collision detection

Example 16 (eg16.c) modifies Example 13 (page 87) to include the following navigator function
which performs simple collision detection:

/* Navigator function with collision detection */
void myNavigator(MAV_viewParams *vp, float am, float ls, float as)
{
MAV_viewParams orig;
MAV_line ln;
MAV_object *o;
MAV_objectIntersection oi;



8.2. EXAMPLE 16: SIMPLE COLLISION DETECTION 95

float dist;

/* Copy the original view parameters */
orig= *vp;

/* Navigate forwards */
mav_navigateForwards(vp, am, ls, as);

/* Calculate the direction and distance of travel */
ln.pt= orig.eye;
ln.dir= mav_vectorSub(vp->eye, orig.eye);
dist= sqrt(mav_vectorDotProduct(ln.dir, ln.dir));
ln.dir= mav_vectorNormalize(ln.dir);

/* Check if any objects intersect this line */
if (mav_SMSIntersectLineAll(mav_win_current, ln, &oi, &o)) {

/* Is the intersection closer than the distance travelled? */
if (oi.pt1 < (dist+3.0)) {

/* Collision occurred, so use original view parameters */
*vp= orig;
printf("Collision occurred\n");

}
}

}

The default mouse navigation is made to use this navigator function by calling:

/* Use customized navigation */
mav_navigationMouseDefaultParams(mav_win_all, MAV_LEFT_BUTTON,

mav_navigateYawFixedUp, 0.001, -0.00005,
myNavigator, 0.001, 0.00005);

The collision detection works by intersecting all SMS’s (in other words, all objects) with the line
which joins the eyepoint before and after the navigation has been applied. If any object intersects this
line, and the distance to the intersection point is less than the distance travelled, then a collision has
occurred and the navigator does not modify the view parameters. Note that an arbitrary constant is
used to prevent the eyepoint from getting too close to an object which would otherwise fill the field of
view and disorientate the user.

This is a very simplistic implementation of collision detection. Collision only occurs if the movement
in the eyepoint intersects an object. A more realistic test would be to check that a particular volume
of space, representing the users body, does not intersect an object.

Furthermore, collision detection is only performed on one navigator function, and it would be imprac-
tical to implement collisions detection in this manner for all the others.

We will address these two issues in the remainder of this chapter.
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8.3 Events

In this section we describe how mouse events trigger navigation.

MAVERIK has two separate mouse event callback functions. The one described so far, introduced
in Example 5 (page 35), is used by the application to define an object’s response to mouse events.
The other is reserved specifically for implementing mouse navigation. It is defined by the second
argument of mav navigationMouse and is triggered when any mouse button events occurs anywhere
in the specified window.

When a mouse button event occurs, the function set with mav navigationMouse is executed. If no
such function was set or its return value was MAV FALSE, then the mouse event callback function set
with mav callbackMouseSet is also executed if its applicable.

A mouse event callback to implement navigation could be defined as follows:

int myXOrig, myYOrig;

void myMove(void *ignored)
{
float xdiff, ydiff;

/* Calculate amount mouse has moved from navigation origin */
xdiff= mav_mouse_x-myXOrig;
ydiff= -(mav_mouse_y-myYOrig);

/* Apply navigator functions */
mav_navigateYaw(mav_win_current->vp, xdiff, 0.01, -0.0005);
mav_navigateForwards(mav_win_current->vp, ydiff, 0.01, 0.0005);

}

int myNav(MAV_object *o, MAV_mouseEvent *me)
{
if (me->movement==MAV_PRESSED)
{

/* Note origin of navigation */
myXOrig= me->x;
myYOrig= me->y;

/* Start executing myMove function at beginning of frame */
mav_frameFn0Add(myMoveFn, NULL);

}
else
{

/* Stop executing myMove function */
mav_frameFn0Rmv(myMove, NULL);

}

/* Also pass event onto application defined mouse event callback fn */
return MAV_FALSE;
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}

The mouse event callback is set using:

mav_navigationMouse(mav_win_all, myNav);

The principle here is that when a mouse event occurs, the mouse position is noted and a function
is set to be executed at the beginning of every frame. This function calculates the horizontal and
vertical displacements between the current mouse position and its noted position. These then act as
the amounts by which the navigator functions modify the view parameters. Note how the vertical
mouse displacement is calculated due to windows having their top-left corner as the origin.

Obviously, the collision detection check could now be incorporated in to myMove and hence would
work with any navigator function you chose to place in this function.

8.4 Default mouse navigation

The MAVERIK default mouse navigation function, mav mouseNavigationDefault, is a bit more
complicated than the one shown above. As well as enabling you to define the navigator functions
and scaling factors, it also allows for more than one navigator function to be active at once. (The
implementation shown above would fail badly if a second button was pressed before the first was
released).

The source code to mav mouseNavigationDefault can be found in mav mouse.c in the src/navigation
sub-directory of the MAVERIK distribution.

An alternative form of navigation could be achieved by always having the function myMove executed
at the start of the frame and setting the navigation origin to the middle of the screen. This would give
constantly active navigation, which is not triggered by mouse button events.

Keyboard navigation is implemented in exactly the same manner.

8.5 Example 17: complex collision detection

Example 17 (eg17.c) modifies Example 16 to implement the type of navigation event handler de-
scribed above.

int myXOrig[3], myYOrig[3];

void myMove(int i)
{
MAV_viewParams orig;



98 CHAPTER 8. CUSTOMISING NAVIGATION

MAV_BB bb;
float xdiff, ydiff;
MAV_SMS *tmp;

/* Copy the original view parameters */
orig= *(mav_win_current->vp);

/* Calculate amount mouse has moved from navigation origin */
xdiff= mav_mouse_x-myXOrig[i];
ydiff= -(mav_mouse_y-myYOrig[i]);

/* Apply navigator functions */
switch (i) {

case 0: /* left button */
mav_navigateYaw(mav_win_current->vp, xdiff, 0.01, -0.0005);
mav_navigateForwards(mav_win_current->vp, ydiff, 0.01, 0.0005);
break;

case 2: /* right button */
mav_navigateRight(mav_win_current->vp, xdiff, 0.01, -0.0005);
mav_navigateUp(mav_win_current->vp, ydiff, 0.01, 0.0005);
break;

}

/* Make a BB of size 2 units around the eye point */
bb.min=mav_vectorAdd(mav_win_current->vp->eye, mav_vectorSet(-1.0, -1.0, -1.0));
bb.max=mav_vectorAdd(mav_win_current->vp->eye, mav_vectorSet(+1.0, +1.0, +1.0));

/* Create a temporary objList SMS to hold any objects which intersects this BB */
tmp= mav_SMSObjListNew();

/* Check if this BB intersects any object */
if (mav_SMSIntersectBBAll(mav_win_current, bb, tmp)) {

/* Collision occurred, so use original view parameters */
*(mav_win_current->vp)= orig;
printf("Collision occurred\n");

}

/* Delete temporary SMS (but not its contents) */
mav_SMSDelete(tmp, MAV_FALSE);

}

void myMove0(void *ignored) {
myMove(0);

}

void myMove1(void *ignored) {
myMove(1);

}

void myMove2(void *ignored) {
myMove(2);

}
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MAV_frameFn myMoveFn[]={myMove0, myMove1, myMove2};

int myNav(MAV_object *o, MAV_mouseEvent *me)
{
if (me->movement==MAV_PRESSED)
{

/* Note origin of navigation */
myXOrig[me->button]= me->x;
myYOrig[me->button]= me->y;

/* Start executing myMove function at beginning of frame */
mav_frameFn0Add(myMoveFn[me->button], NULL);

}
else
{

/* Stop executing myMove function */
mav_frameFn0Rmv(myMoveFn[me->button], NULL);

}

/* Also pass event onto application defined mouse event callback fn */
return MAV_FALSE;

}

This is set by:

/* Use customized mouse navigation */
mav_navigationMouse(mav_win_all, myNav);

Note the use of arrays to allow more than one button to be pressed simultaneously.

The collision detection in this example uses an axis-aligned bounding box of size 2 units centered
at the position the user is trying to move to. The function mav SMSIntersectBBAll (MFS p 287)
determines if that BB intersects any object and if so adds the them to an SMS. (In this example we are
not concerned with which object(s) the BB encompasses, only that it does, and so the SMS is instantly
deleted with mav SMSDelete (MFS p 202)). This gives rise to a more realistic collision.
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Chapter 9

Working with an SMS

In would be nice to take a bird’s eye view of Example 17 (page 97) and render the BBs of each of the
objects, so we could see the collision detection process happening.

We already know how to calculate and display the BB for a single object – see Example 11 (page 81);
what we need is a method for applying this operation (or indeed any other) to the entire contents of an
SMS.

This chapter describes how this can be achieved.

9.1 The implementation of an SMS

An SMS is implemented in exactly the same way as an object class: using callback functions. Both
an SMS and an object are simply data structures with associated functions which perform certain
operations on the data.

As with object classes, applications are free to create their own SMS data structures and define the
callback functions which operate on them.

But for now, all we need to describe is a subset of the SMS callbacks and how they can be executed.
A fuller description of SMS’s is presented in Chapter 13.

9.2 Basic SMS callbacks

You have already, albeit unknowingly, encountered two callbacks which operate on an SMS:

� The “add object” callback, executed by the function mav SMSCallbackObjectAddExec (MFS
p 334), which has the prototype:

101
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int mav_SMSCallbackObjectAddExec(MAV_SMS *s, MAV_object *o);

and adds object o to SMS s. The function mav SMSObjectAdd is simply a wrapper to the above
call and hides the novice user from an otherwise confusing function name.

� The “remove object” callback, executed by the function mav SMSCallbackObjectRmvExec (MFS
p 336), which has the prototype:

int mav_SMSCallbackObjectRmvExec(MAV_SMS *s, MAV_object *o);

and removes object o from SMS s. The function is executed when an object in deleted with
mav objectDelete to remove it from any SMS’s it is in. The function mav SMSObjectRmv is
simply a wrapper to the above call.

9.3 The “reset” and “next” SMS callbacks

Regardless of the kind of data structure comprising the SMS – for example, a simple linked list, or a
complex hierarchical structure – it can be traversed one element at a time.

Two callbacks are defined, executed with mav SMSCallbackPointerResetExec (MFS p 337) and
mav SMSCallbackObjectNextExec (MFS p 337), to allow an application to do this:

int mav_SMSCallbackPointerResetExec(MAV_SMS *s);

int mav_SMSCallbackObjectNextExec(MAV_SMS *s, MAV_object **o);

Executing the first function resets an internal pointer kept by the SMS. The second function obtains
the object at the internal pointer’s location and increments it to the next object in the SMS’s structure.
The function returns MAV FALSE when the SMS has been fully traversed.

So, an SMS can be traversed as follows:

MAV_SMS *sms;
MAV_object *obj;

mav_SMSCallbackPointerResetExec(sms);
while (mav_SMSCallbackObjectNextExec(sms, &obj)) {
/* perform operation on object ’obj’ */

}

Warning: in general you should not add objects to, or remove objects from, an SMS while it is being
traversed, since these operations may invalidate the internal pointer. If for example you need to remove
certain objects from an SMS, first traverse the SMS and note all the relevant objects in a separate list.
Then, when the SMS has been fully traversed, traverse the separate object list and then remove the
objects it contains from the SMS. MAVERIK lists provide a convenient means of achieving this – see
mav listNew (MFS p 143).
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9.4 The push and pop SMS callbacks

It is sometime necessary to recursively traverse an SMS – to pass through it one (or more) times for
each object in the SMS. Such a pass would be needed, say, to calculate the closest neighbour to each
object.

Two callbacks are defined to achieve this, executed by mav SMSCallbackPointerPushExec (MFS
p 337) and mav SMSCallbackPointerPopExec (MFS p 337) which have the prototypes:

int mav_SMSCallbackPointerPushExec(MAV_SMS *s);

int mav_SMSCallbackPointerPopExec(MAV_SMS *s);

These functions respectively push and pop the internal pointer using a stack maintained by the SMS.

For example:

MAV_SMS *sms;
MAV_object *obj1, *obj2;

mav_SMSCallbackPointerResetExec(sms);
while (mav_SMSCallbackObjectNextExec(sms, &obj1)) {

mav_SMSCallbackPointerPushExec(sms);
mav_SMSCallbackPointerResetExec(sms);
while (mav_SMSCallbackObjectNextExec(sms, &obj2)) {

/* operations on objects ’obj1’ and ’obj2’ */

}
mav_SMSCallbackPointerPopExec(sms);

}

Currently these operations only work on the “object list” type of SMS. They have not yet been imple-
mented for the hierarchical bounding box SMS.

9.5 The “execute function” SMS callback

We could use the callbacks described above to traverse the SMS in Example 17 (page 97) to calculate
and render the BBs of its contents. But this would be wasteful since it would consider all objects in
the SMS, not just those which are visible in the view frustum.

You may be surprised to learn that there is no “cull objects and display” SMS callback – we felt
this was far too specific. What there is however is an “execute function” SMS callback. This culls



104 CHAPTER 9. WORKING WITH AN SMS

the objects in the SMS to a set of arbitrary clip planes, executing a further function on the resulting
objects. It’s a callback within a callback!

A wrapper function can than made which uses this callback with the clip planes that correspond to the
view frustum and arranges so that the function executed displays the object. But, the same callback
can be used – for example – to determine which objects are within a region of space around a user’s
avatar and have these objects change colour.

The execution of the callback which achives this is via the command mav SMSCallbackExecFnExec (MFS
p 331) and has the prototype:

int mav_SMSCallbackExecFnExec(MAV_SMS *s, MAV_drawInfo *di, MAV_SMSExecFn *fn);

The two data structure arguments to this function are as follows:

typedef struct {
MAV_clipPlanes cp;
MAV_viewParams vp;
void *userdef;

} MAV_drawInfo;

typedef void (*MAV_SMSExecFnFn)(MAV_object *, MAV_drawInfo *, void *);

typedef struct {
MAV_SMSExecFnFn fn;
int nocalc;
void *params;

} MAV_SMSExecFn;

The MAV drawInfo data structure contains the culling information which comprises:

� A set of clip planes. Creating your own clip planes can be tricky, but MAVERIK provides a
function to create these from the view frustum (see below).

� The current view parameters. An SMS may also perform some LOD processing, e.g. only
passing on objects which are within the clip planes and are closer that some threshold to the
eye.

� A user-definable field which an application can use to hold any extra data relevant to the culling
operation. For example, if you have an eye-tracking system it could contain which object the
user is looking at.

The MAV SMSExecFn (MFS p 84) data structure defines what function is to be executed on the objects
which pass the cull test. This comprises:

� The function to execute (of type MAV SMSExecFn (MFS p 84) – prototype shown above).
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� An indication of whether or not the callback function should be executed if the required calcu-
lation on the object can not be performed (for example its bounding box callback is not set).

� A user-definable field. This is not interpreted by the SMS but rather forms the third field of the
function to execute. This field could be used, for example, to hold a MAVERIK list which the
object is then added to.

It may be easier to appreciate the workings of the “execute function” callback when seen in action.
Below is a representation of how mav SMSDisplay could be implemented:

void disp(MAV_object *o, MAV_drawInfo *di, void *ignored)
{
/* Execute the draw callback of the object */
mav_callbackDrawExec(o, di);

}

void mav_SMSDisplay(MAV_window *w, MAV_SMS *sms)
{
MAV_SMSExecFn fn;
MAV_drawInfo di;

/* Make an SMSExecFn to call ’disp’ on objects which pass the cull */
fn.fn= disp;
fn.nocalc= 1; /* If unsure call ’disp’ anyway */
fn.params= NULL;

/* Make up draw info which corresponds to the view */
di.cp= mav_clipPlanesGet(w, -1.0, 1.0, -1.0, 1.0, w->ncp / w->fcp, 1.0);
di.vp= *(w->vp);

mav_SMSCallbackExecFnExec(sms, &di, &fn);
}

mav clipPlanesGet (MFS p 268) creates a set of clip planes from the view frustum in a window.
The various arguments to this function allow for clip planes to be defined using only a portion of the
view frustum.

The actual implementation of mav SMSDisplay is such that it does not execute a fixed function; rather
it executes the function defined by the global variable mav SMS displayFn. By default, this variable
is set to be the function mav SMSDisplayFn (MFS p 284) which simply executes the draw callback of
the object.

9.6 Example 18: collision detection revisited

Example 18 (ex18.c) modifies Example 17 (page 97) to render the BBs of each of the objects so that
we can see the collision detection process happening.
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It achieves this by setting the mav SMS displayFn variable to point to its own function which renders
the object and calculates and displays their BB.

/* Customized SMS display function */
void myDraw(MAV_object *o, MAV_drawInfo *di, void *ignored)
{
MAV_BB bb;

/* Draw object */
mav_callbackDrawExec(mav_win_current, o, di);

/* Calculate and display BB */
mav_callbackBBExec(mav_win_current, o, &bb);
mav_BBDisplay(mav_win_current, bb);

}

which is set in main by:

/* Set the SMS display function */
mav_SMS_displayFn= myDraw;

This example opens an additional window with its own independent set of viewing parameters:

MAV_window *ov;
MAV_viewParams ovp;

/* Create an overview window with its own view params */
ov= mav_windowNew(200, 200, 200, 200, "overview", NULL);
mav_windowViewParamsSet(ov, &ovp);

The view in this second window is defined to be 50 units above the view point of the first window and
looking straight down to give an overview effect. The BB used for collision detection is rendered in
the overview window.

Both of these features are achieved using frame modification functions:

void fixView(void *ignored)
{
/* Copy the other window’s view */
ovp= mav_vp_default;

/* But move vertical up and look down */
ovp.eye.y+=50;
ovp.view= mav_vectorSet(0,-1,0);
ovp.up= mav_vp_default.view;

}
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void drawBB(void *ignored)
{
/* Display user’s BB in overview window */
mav_BBDisplay(ov, bb);

}

These are set in main with:

/* Functions to set the overview window view and render the BB */
mav_frameFn1Add(fixView, NULL);
mav_frameFn2Add(drawBB, NULL);

9.7 The “all class” handle

Another way of achieving the effect of Example 17 would be to exploit the properties of the object
class mav class all. Callbacks set for this class take priority over ones set for a specific class. For
example, we could define a draw callback as follows:

int myDraw(MAV_object *o, MAV_drawInfo *di)
{
MAV_BB bb;

/* Clear the "all classes" draw callback */
mav_callbackDrawSet(mav_win_all, mav_class_all, NULL);

/* Draw object */
mav_callbackDrawExec(mav_win_current, o, di);

/* Calculate and display BB */
mav_callbackBBExec(mav_win_current, o, &bb);
mav_BBDisplay(mav_win_current, bb);

/* Reset the "all classes" draw callback */
mav_callbackDrawSet(mav_win_all, mav_class_all, myDraw);

}

This would be set in main with:

/* Set the "all classes" draw callback */
mav_callbackDrawSet(mav_win_all, mav_class_all, myDraw);

Note the need to clear the “all classes” draw callback to prevent an infinite loop occurring.
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Chapter 10

Defining new object callbacks

Chapter 7 described the standard set of callback methods which MAVERIK defines, which include
draw object, calculate BB of object, and so on. While these are general methods needed to process
objects in a virtual environment, some applications may wish to define their own methods, specific to
their needs. For example, a CAD application might wish to:

� define a method to obtain the part number of an object, which could then be displayed alongside
the object;

� define a method to obtain particular attributes of an object. For example, when modelling pipes,
taking different actions depending on whether a pipe is known to be full of liquid or gas. This
might be used to only allow an operator to interactively modify sections of pipe-work which are
known to be empty;

� define a method which is called during the manipulating of an object so as to enforce some
constraint, such as minimum inter-object separation, or health and safety regulations.

MAVERIK allows applications to extend its default set of callback methods to incorporate such application-
specific methods. However, since an application would need to both define and execute the callback
function itself – MAVERIK will make no use of it – it is a subtle point as to the advantage of processing
objects via a callback mechanism, as opposed to simply calling the relevant function in the usual way.
The advantage is the same as that described in Chapter 7 for creating application specific classes of
object: encapsulation.

New callback methods can be encapsulated and effectively incorporated into the MAVERIK system so
that it would appear to another user that MAVERIK is making use of this functionality, whereas in fact
it is only being used by a layer on top of the MAVERIK kernel. By now you may have guessed that
the “standard” MAVERIK callback methods, like the “default” objects, are not part of the MAVERIK

kernel at all – but have been added on later using the mechanism we are about to describe.

It is easier to appreciate the encapsulation issue when considering event-based callbacks (recall that
in MAVERIK event-based and process-based callbacks are implemented by the same mechanism). In
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supporting a new input device, for example, it would be essential that a new event-based callback be
created to allow objects to define their response to events generated by the device. This, along with
the controlling code for the device which detects events and executes the callbacks, could then be
encapsulated and given to other users to provide support for the input device. We’ll discus adding
MAVERIK support for new input devices in Chapter 12.

10.1 Example 19: the “calculate volume” callback

To demonstrate the process of creating a new callback method we shall implement a “calculate vol-
ume” callback. This is a new callback which object classes can define to calculate and return the
volume of the object.

This could be used for example in Example 7 (page 40), so that only objects less than a certain volume
would be allowed to “jump” or be “picked” with the “j” and “p” keys. Similarly, it could be used in
the collision detection navigation (Chapter 8) so that small objects do not constitute a collision which
stops the user’s movements.

A new callback is obtained using the function mav callbackNew (MFS p 295) which returns a pointer
to a MAV callback (MFS p 41) data structure which acts as the handle to the newly created callback:

MAV_callback *mav_callback_calcVol;

mav_callback_calcVol= mav_callbackNew();

Note that we are using a naming scheme consistent with the “standard” MAVERIK callbacks thus
making any potential encapsulation more transparent.

The exact contents of the MAV callback data structure are of little concern to the average user. (In fact
this data structure simply contains a unique integer which acts as an index into an array of callback
functions held for each class of object).

A callback function is set for a particular class of objects using mav callbackSet (MFS p 297), as
follows:

void mav_callbackSet(MAV_callback *cb, MAV_window *w, MAV_class *c, MAV_callbackFn fn);

where cb specifies the callback, w the window (callback functions are defined on a per-window basis),
c is the class of object and fn the callback function.

Callback function, MAV callbackFn (MFS p 48), are of type:

typedef int (*MAV_callbackFn)(MAV_object *o, void *d1, void *d2);
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where o is the object to process and d1 and d2 are void pointers the meaning of which we’ll describe
shortly.

The function set for callback cb, in window w, for object o can then be executed using mav callbackExec (MFS
p 293):

int mav_callbackExec(MAV_callback *cb, MAV_window *w, MAV_object *o, void *d1, void *d2);

d1 and d2 are typically pointers to callback-specific data structures cast to be void pointers. These
values are passed untouched to the callback function which re-casts them to be pointers to the appro-
priate data structures. This allows up to two pointers to arbitrary data structures to be passed to the
callback functions – usually one to detail any additional information needed by the callback function
and the other to detail the results of the calculation.

Take for example the object-line intersection callback: the information passed into this callback func-
tion is a MAV line data structure which defines the line for intersection testing, and a MAV object-
Intersection, which details the results of the intersection calculation. While these two data struc-
tures could be combined into one, keeping the input and output data structures separate makes sense.
Of course, NULL values can be used for a particular callback if an input and/or output data structure is
not applicable.

The return value of mav callbackExec is the return value of the callback function or MAV FALSE if
no callback function has been set.

10.2 Callback wrappers

In their “raw” form described above, callbacks are somewhat cumbersome to use. To overcome this,
additional “wrapper” functions can be defined to set and execute the callback with tighter prototyping:

typedef int (*MAV_callbackCalcVolFn)(MAV_object *o, float *vol);

void mav_callbackCalcVolSet(MAV_window *w, MAV_class *c, MAV_callbackCalcVolFn fn)
{

mav_callbackSet(mav_callback_calcVol, w, c, (MAV_callbackFn) fn);
}

int mav_callbackCalcVolExec(MAV_window *w, MAV_object *o, float *vol)
{

return (mav_callbackExec(mav_callback_calcVol, w, o, vol, NULL));
}

The box class could then define a function to calculate the volume of this shape as follows:

int mav_boxCalcVol(MAV_object *o, float *vol)
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{
/* Convert from generic Maverik object to a box object */
MAV_box *box= (MAV_box *) mav_objectDataGet(o);

/* Calculate volume */
*vol= (box->size.x*box->size.y*box->size.z);

return MAV_TRUE;
}

which would be set with:

mav_callbackCalcVolSet(mav_win_all, mav_class_box, mav_boxCalcVol);

and executed as follows:

float vol;

mav_callbackCalcVolExec(mav_win_current, obj, &vol);

Example 19 (eg19.c) is a modified version of Example 5 (page 35), which implements the “calculate
volume” callback printing the results of the calculation to the shell window.

10.3 Example 20: the “calculate volume” callback extended

Example 20 (eg20.c) modifies Example 17 (page 97) to implement the “calculate volume” callback
for the box and cylinder.

The volume of a cylinder is trivially calculated as follows:

/* Routine to calculate the volume of a cylinder */
int mav_cylinderCalcVol(MAV_object *o, float *vol)
{
/* Convert from generic Maverik object to a cylinder object */
MAV_cylinder *cyl= (MAV_cylinder *) mav_objectDataGet(o);

/* Calculate volume */
*vol= (MAV_PI*cyl->radius*cyl->radius*cyl->height);

return MAV_TRUE;
}

and set in the main routine with:
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mav_callbackCalcVolSet(mav_win_all, mav_class_cylinder, mav_cylinderCalcVol);

This example uses the mav SMS displayFn variable (introduced in Example 18 (page 105) to point
to its own function which renders the object and calculates and displays its volume.

/* New SMS display fn which calculates and displays the volume of an object */
void myDisp(MAV_object *o, MAV_drawInfo *di, void *ig)
{
MAV_matrix *m;
MAV_vector p;
MAV_BB bb;
char msg[100];
float v;

/* Draw object */
mav_callbackDrawExec(mav_win_current, o, di);

/* Calculate volume, either from callback or BB */
if (mav_callbackQuery(mav_callback_calcVol, mav_win_current, o))
{

mav_callbackCalcVolExec(mav_win_current, o, &v);
}
else
{

mav_callbackBBExec(mav_win_current, o, &bb);
v= (bb.max.x-bb.min.x)*(bb.max.y-bb.min.y)*(bb.max.z-bb.min.z);

}

/* Get position of object */
mav_callbackGetMatrixExec(mav_win_current, o, &m);
p= mav_matrixXYZGet(*m);

/* Convert this to screen coordinates */
p= mav_vectorScrnPos(p);

/* Display the volume at this location (provided its in front of us) */
if (p.z<1.0) {

sprintf(msg, "vol= %.0f\n", v);
mav_stringDisplay(mav_win_current, msg, MAV_COLOUR_BLACK, 0, p.x, p.y);

}
}

This routine checks if the “calculate volume” callback has been defined for the object. If it has, its
executed to obtain the volume of the object. If not, the BB is used to estimate the volume.

A text string containing the volume is printed to the screen. The function mav vectorScrnPos (MFS
p 215) returns the NDC screen coordinates of the supplied world coordinate frame vector.

This routine is set in main by:
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/* Override default SMS display function */
mav_SMS_displayFn= myDisp;



Chapter 11

Miscellaneous Level 2 topics

We’ve now come to the end of the worked examples for the MAVERIK Programming Level 2 section
of this manual. This chapter describes various miscellaneous concepts and function calls that a Level
2 programmer may need to know about, but which have not been covered by the worked examples.

This chapter should be considered as an appendix or reference section to Programming Level 2. Some
repetition of the material in the earlier chapters is inevitable.

11.1 The hierarchical bounding box SMS

The MAVERIK distribution provides two types of SMS. So far we have only discussed the ”Object
List” SMS, which stores objects in the order in which they were inserted, and uses the bounding boxes
of those objects to determine if they are visible and thus should be rendered. This section describes
the other type of SMS, the hierarchical bounding box (HBB) SMS. Chapter 13 describes how new
types of SMS can be defined which store and process objects in an application-specific manner.

HBBs are designed to store the static objects in a scene – objects whose sizes and positions don’t
change. This restriction means that upon insertion the object’s axis-aligned bounding box (BB) can
be calculated and stored for efficiency rather than being re-calculated each time it is required, which
is the case for the object list SMS.

Furthermore, as objects are inserted, a hierarchy of BBs is built up with each object’s BB as a leaf
node. Testing a BB determines the action required for all the objects beneath it in the hierarchy. In
the case of view-frustum culling, for example, testing a BB indicates:

� that all objects beneath it can be removed from further consideration if the BB lies completely
outside the view frustum;

� that all objects beneath it need to be displayed if the BB lies completely inside the view frustum;

� or, if the BB intersects the frustum, that the BB for the next level down in the hierarchy needs
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to be checked.

An HBB SMS can be created with mav SMSHBBNew (MFS p 206):

MAV_SMS *mav_SMSHBBNew(void);

The functions which create an SMS, regardless of its type, always return a pointer to the generic SMS
type, MAV SMS. Therefore, in theory, to modify any of the example programs to use an HBB SMS
requires only that the line creating the SMS be changed. However, in practice making this simple
change would not be sufficient since it would require all the objects to be static.

Broadly speaking, the objects in an application can be divided into those which are static, such as the
walls and floors of a building, and those which are dynamic, for example a moving avatar. Typically,
an application would store the static objects in an HBB SMS, and the dynamic objects in an object list
SMS.

Objects can be freely moved between SMSs using the functions mav SMSObjectAdd and mav SMSObjectRmv.
For example, if an application wishes to make changes to an object which is normally static, it can
remove the object from its HBB SMS and place it in an object list SMS while it undergoes the ma-
nipulation. The application can then re-insert it into the HBB SMS, to take advantage of the HBB
method’s efficiency.

While a hierarchy can be built an object at a time, a more efficient one can be constructed if all the
objects which it is to contain are known at the start of construction. Building a HBB SMS in this
manner is achieved with the function mav HBBConstructFromSMS (MFS p 317):

void mav_HBBConstructFromSMS(MAV_SMS *target, MAV_SMS *from);

where target is the HBB SMS to construct from the SMS from, which can be any of type.

11.2 View modifier functions

As described in Chapter 5.1 (page 47), the MAVERIK viewing model is based on the standard computer
graphics viewing model, where the application defines an eye point, view direction vector and view
up vector. However, MAVERIK generalises this model by introducing two view modifier functions:
the per-view modifier function, and the per-window modifier function.

Each view modifier function is used to arbitrarily transform the view parameters, as supplied by the
application, to create modified view parameters which define the view that is actually used.

The prototype for a view modifer function is:

typedef void (*MAV_viewModifierFn)(MAV_window *);
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11.2.1 The Per-view modifier function

The first view modifier function is the per-view modifier, which an application could use to adjust
the original eye point to implement an over-the-shoulder view for an avatar, or to modify the view
direction so that it tracks the orientation of a head-mounted display.

The per-view modifier function is set using the mod field of the MAV viewParams data structure. If
defined, this function is executed at the start of the frame to transform the application supplied values
of eye, view, up and right storing the new values in the trans eye, trans view, trans up and
trans right fields of the MAV viewParams data structure.

The allobjs example program in the examples/misc/allobjs sub-directory of the MAVERIK dis-
tribution demonstrates how per-view modifier functions work. Pressing “l” in this example sets the
mod field of the MAV viewParams data structure to be lookabout, pressing “f” sets it back to NULL.
lookabout is implemented as follows:

void lookabout(MAV_window *w)
{
float ax, ay;

/* Calculate transformed view parameters */
w->vp->trans_eye= w->vp->eye;
w->vp->trans_view= w->vp->view;
w->vp->trans_up= w->vp->up;
w->vp->trans_right= w->vp->right;

/* Rotate view parameters by an amount governed by the mouse pos */
ax= (w->width/2-mav_mouse_x)*0.01;
ay= (w->height/2-mav_mouse_y)*0.01;

/* Pitch view by amount ay */
w->vp->trans_view= mav_vectorRotate(w->vp->trans_view, w->vp->trans_right, ay);
w->vp->trans_up= mav_vectorRotate(w->vp->trans_up, w->vp->trans_right, ay);

/* Yaw view by amount ax */
w->vp->trans_view= mav_vectorRotate(w->vp->trans_view, w->vp->trans_up, ax);
w->vp->trans_right= mav_vectorRotate(w->vp->trans_right, w->vp->trans_up, ax);

}

When activated, lookabout is called at the start of each frame and causes the final view to be a
pitched and yawed version of the view originally defined by the application. (The viewing parameters
are pitched by an amount given by the mouse’s vertical position and yawed by an amount given by
the mouse’s horizontal position).

Note: the modified view does not overwrite the application-defined view. A view modifier function
takes as input a MAV window data structure from which the relevant MAV viewParams data structure is
trivially obtained (from the vp field).

The tdm example in the examples/misc/TDM sub-directory of the MAVERIK distribution demon-
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strates how a per-view modifier function can be used to make the view track a 6 DOF tracking device,
such as a Polhemus sensor mounted on a head-mounted display. Note: this example will only mean-
ingfully work if MAVERIK has been compiled with the TDM option enabled.

11.2.2 The Per-window modifier function

The second view modifier function is the per-window modifier which an application can use to
generate stereo views.

The per-window modifier function is set using the mod field of the MAV window data structure. If
defined, this function is is executed at the start of the frame, but after the per-view modifier function,
to transform the values of trans eye, trans view, trans up and trans right storing the new
values in the eye, view, up and right fields of the MAV window data structure. It is these transformed
values which are used to define the view for the frame.

Stereo viewing is typically achieved by creating two windows which share a common set of MAV viewParams
but have different per-window modifier functions – one which offsets the view to the left, the other
which offsets the view to the right.

Allied to this calculation is a set of view modifier parameters which are common to both windows
and contain the information needed to calculate the stereo view, such as the eye offset.

The full path for defining the view is shown below:

per−view modifier function

(eye, view and up)
specified by application

left
window

viewing parameters
left eye

viewing parameters
right eye

window
right

view parameters

per−window modifier function
of left window of right window

per−window modifier function

transformed
view parameters

(trans_eye, trans_view,
trans_up)

per−window modifier
parameters
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Although an application can define the per-window modifier function and parameters for a win-
dow directly by setting the relevant fields in the MAV window data structure, MAVERIK provides the
mav windowViewModifierSet (MFS p 239) function to perform this task:

void mav_windowViewModifierSet(MAV_window *w, MAV_viewModifierParams *vmp,
MAV_viewModifierFn fn);

The MAV viewModifierParams (MFS p 35) data structure is as follows:

typedef struct {
float offset;
float angle;
void *userdef;

} MAV_viewModifierParams;

MAVERIK provides two per-window modifier functions, mav eyeLeft (MFS p 132) and mav eyeRight (MFS
p 132), which translates trans eye along the trans right vector by � offset 
 2 	 0 and � offset 
 2 	 0
respectively.

The other fields of the MAV viewModifierParams data structure are currently unused. However,
per-window modifier functions could be written which use angle to implement a stereo view with
convergence or use the userdef field to attach arbitrary data.

If mav opt stereo is used to a open stereo window pair, they are automatically assigned per-window
modifier functions as follows:

mav_windowViewModifierSet(mav_win_left, &mav_stp_default, mav_eyeLeft);
mav_windowViewModifierSet(mav_win_right, &mav_stp_default, mav_eyeRight);

where mav stp default is the default view modification parameters introduced in Chapter 6.2.3
(page 62).



120 CHAPTER 11. MISCELLANEOUS LEVEL 2 TOPICS



Part IV

MAVERIK Programming Level 3
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Chapter 12

Adding new input devices and modules

Please email maverik@aig.cs.man.ac.uk for advice on this topic.
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Chapter 13

Customising spatial management

Please email maverik@aig.cs.man.ac.uk for advice on this topic.
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Appendix A

Running MAVERIK applications

A.1 Installing MAVERIK, and compiling with it

For full details see the INSTALL file in the top level directory of the MAVERIK distribution. For your
convenience, this is reproduced in Section A.4.

A.1.1 Environment variables

MAVERIK libraries are dynamically linked. Therefore, you may need to set your LD LIBRARY PATH
(or LD LIBRARYN32 PATH on Irix6) to point to their location if they are not in one of the standard
places. For example,

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/maverik-6.2/lib

The TDM libraries, if used, are also dynamically loaded and so their location may also need to be
present in the LD LIBRARY PATH.

Some MAVERIK applications, e.g the avatar example (in examples/misc/avatar), require you to set
the MAV HOME environment variable to point to the MAVERIK distribution. For example,

export MAV_HOME=/usr/local/maverik-6.2

A.2 A sample Makefile

Here’s a simple Makefile for compiling with MAVERIK.
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CC= gcc
CFLAGS= -I/usr/local/maverik-6.2/incl
LIBS= -L/usr/local/maverik-6.2/lib -lmaverik

eg1: eg1.o
${CC} eg1.o -o eg1 ${LIBS}

Feel free to copy the Makefile that comes with the MAVERIK distribution examples. To use these,
two environment variables need to be set:

1. MAV HOME to indicate where Maverik is installed – see above.

2. CC to specify the various compiler options
e.g. for GNU/Linux

export CC="gcc -O2 -finline-functions -fomit-frame-pointer -funroll-loops -ffast-math -march=‘uname -m‘"

e.g. for Irix6 with an R10k processor

export CC="cc -n32 -mips4 -r10000 -O3"

A.3 Keyboard function keys

MAVERIK recognises the following key presses while an application is running:

� Shift-Esc quits the running program

� Shift-F1 decrease stereo offset by 10%

� Shift-F2 decrease stereo offset by 1%

� Shift-F3 increase stereo offset by 1%

� Shift-F4 increase stereo offset by 10%

� Shift-F5 swap left and right windows

� Shift-F6 toggle stereo offset between value and 0

� Shift-F7 print window and view information to stdout

� Shift-F8 toggle wireframe/filled

� Shift-F9 toggle multisample (where applicable)

� Shift-F10 toggle drawing mouse as cross-hairs at world coordinates

� Shift-F11 dump the window the mouse is in as snap[n].ppm
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� Shift-F12 prints status information to stdout

� Ctrl-F2 decrease linear navigation scaling factor by 10%

� Ctrl-F3 increase linear navigation scaling factor by 10%

� Ctrl-F4 toggle LOD

� Ctrl-F5 decrease near clipping plane by 10%

� Ctrl-F6 increase near clipping plane by 10%

� Ctrl-F7 decrease far clipping plane by 10%

� Ctrl-F8 increase far clipping plane by 10%

� Ctrl-F9 decrease field of view by 10%

� Ctrl-F10 increase field of view by 10%

� Ctrl-F12 load a module on the fly

Note that some window managers trap these key presses themselves and so they are not guaranteed to
work. This is particularly true for the Shift-Esc sequence.

Shift-F1 – Shift-F6 will only be enabled for stereo applications.

A number of Ctrl-F key presses may also be defined depending on how MAVERIK was compiled and
the supporting modules present. For example if Voodoo acceleration is active then MAVERIK traps
the Ctrl-F1 keypress to toggle between full-screen and in-window rendering.

A.4 The MAVERIK INSTALL file

Building GNU Maverik on UNIX machines
=====================================

To build Maverik you need X11 and either OpenGL, Mesa (version 3.1 or
above) or IrisGL.

Untar the Maverik distribution file which creates the directory
structure shown at the end of this document.

Move into the Maverik directory and type "./setup" followed by
"make". This will compile the Maverik library, example programs, and
any demo programs present.

The "setup" script generates a Makefile appropriate to your
machine. Currently supported UNIX platforms are Irix, RedHat, FreeBSD
and SunOS5. However, we believe that Maverik itself should compile on
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any UNIX platform with X11 and OpenGL/Mesa, so, if you are using a
different platform, edit the script, fill in the appropriate values
and mail us the amendments for inclusion in the next release.

The setup script accepts the following command line options:

--help - prints a help message detailing these arguments.
--debug - to compile with "-g" rather than full optimization.
--VRML97 - to specify that you want VRML97 support (requires a C++

compiler, flex and bison).
--MESAPATH - to specify where Mesa is installed if it is not somewhere

where the compiler will automatically pick up. Also see
note below.

--XLIBPATH - to specify where the X library is installed if not in
/usr/X11R6/lib.

--IrisGL - to specify that you want an IrisGL based graphics module
(no longer actively supported).

--GTK - to specify that you want a GTK based graphics module
--QT - to specify that you want a Qt based graphics module
--D3D - to specify that you want a Direct3D based graphics module

(Cygwin only and see http://www.jabadaw.co.uk/maverik)
--D3DINCL - to specify the location of the Direct3D include files
--TDMPATH - to specify the use and location of TDM (6 DOF input device

support).
--TRINCL and --TRLIBS - to specify the use of the Tiled Rendering

library and where to find its include and
library file.

--PNGINCL and --PNGLIBS - as above but for the PNG library
(requires the zlib library)

--VV - to specify that you want ViaVoice support (requires the
ViaVoice SDK)

Not all options are applicable to all platforms.

An Irix6.x complication use the n32 ABI and, if an R10k processor is
detected, mips4 and r10000 options.

"-O2" optimization is used on Irix platforms, and "-O2
-finline-functions -fomit-frame-pointer -funroll-loops -ffast-math -march=‘uname -m‘"
on RedHat and FreeBSD.

If the Mesa library file is not installed somewhere where the compiler
will automatically pick it up, RedHat users may need to add its
location to their LD_LIBRARY_PATH in order to link and run the Maverik
examples. This is not the case for an RPM installation of Mesa.

FreeBSD users: run the setup script and compile as root. When
compilation is complete type: ldconfig -m <Maverik path>/lib
If when compiling your own Maverik program an error message is
produced for including the header files, the easiest solution is to:
mkdir /usr/include/maverik; cp <Maverik path>/incl/* /usr/local/include/maverik/
Any questions on compiling and running Maverik on FreeBSD should be
directed to Joe Topjian (kazar@telerama.com).
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Building GNU Maverik on Windows machines
========================================

There are two broad options for building Maverik on a Windows machine:
(1) use Cygwin, or (2) use a native Windows compiler such as Microsoft
Visual C++ or Borland C++ builder (we do not have access to other
compilers to test the code with).

Using Cygwin
------------

The Cygwin tools are ports of the popular GNU development tools and
utilities for Windows 9x/ME/NT/2000. This provides a UNIX like
environment in which to build Maverik. Version 1.1.6 or newer of
Cygwin is required to compile Maverik. Cygwin can be downloaded for
free from http://www.cygwin.com.

To build Maverik using Cygwin start a bash shell and follow the Unix
instructions given above (although not all of the options to the setup
script are applicable).

When building Maverik with Cygwin the libraries are statically linked
and the kernel assumes that (at least) all of the standard modules are
present. Because of this the kernel examples cannot be compiled.

More information on installing Cygwin and Maverik can be found at
http://www.jabadaw.co.uk/maverik

Using Visual C++
----------------

Workspace and project files for Microsoft Visual C++ (version 6.0) can
be found in the vc++ sub-directory of the Maverik distribution. These
compile the Maverik libraries and example programs.

Move into the vc++ sub-directory and double-click on "maverik.dsw".
This should launch Visual C++. Build the libraries and examples by
selecting batch build (Build->Batch Build->Build).

The executables for the examples are placed in the same sub-directory
of the Maverik distribution as their respective source files,
eg. examples/MPG, examples/misc/stereo. Some of the examples need to
be executed from this location in order to correctly pick up texture
and model files. Move into the directories and double-click on the
relevant icons. Further, some examples need command line arguments so
simply double-clicking the icon or executing them from Visual C++ will
not work.

As of version 6.2 the Maverik libraries are created as DLLs and
therefore their location needs to be present in the PATH environment
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variable.

The Maverik libraries are automatically built as needed by the
examples and are placed in the lib sub-directory. The Maverik
libraries are built using the "debug single-threaded" runtime
libraries and thus may fail to link with code built using different
versions of the runtime libraries.

To build the Maverik demos (if present) double click on "demos.dsw".

To build a Direct3D version of Maverik, instead of the default OpenGL,
rename the libmaverik-d3d.dsp file in the vc++ sub-directory to be
libmaverik.dsp.

Using Borland C++ Builder
-------------------------

See http://www.jabadaw.co.uk/maverik/borland.html.

Building GNU Maverik on a Macintosh
===================================

To be able to compile Maverik you must install Apple’s implementation
of OpenGL on your Mac (http://www.apple.com/opengl). The code has been
tested with the Metrowerks Codewarrior compiler. To compile Maverik
with this compiler: add all files in the src/kernel, src/callbacks,
src/SMS, src/windows, src/navigation, and src/objects directories plus
the src/gfx/mav_gfxOpenGL.c and src/gfx/mav_gfxWMOpenGLMacOS.c files
to a new Codewarrior project; ensure that the "incl" directory is in
the project’s access paths, via the Project Settings dialog; and add
the OpenGLStubLib and OpenGLStubUtilLib from Apple’s OpenGL SDK to the
project.

By default a hardware accelerated OpenGL context is used, in order to
use software rendering define MAV_MACNOACC during compiling.

Testing the system
==================

To test that the Maverik libraries and examples have been successfully
compiled, we suggest you try executing eg1 in the examples/MPG
sub-directory of the Maverik distribution. You should see a window
appear and display the Maverik welcome message (which consists of
a spiraling Maverik logo with various copyright, version and contact
information). When the message clears you should see an empty blue
window. Press Shift-ESC to quit.

Note that the Maverik libraries are dynamically linked so you may need
to set your LD_LIBRARY_PATH (or LD_LIBRARYN32_PATH for Irix6) to
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include the Maverik library directory in order to run the example
program, e.g. for a bash shell:

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/maverik-6.2/lib

RedHat users may also need to add the location of the Mesa library to
this line, see note in previous section. The location of the TDM
libraries, if used, may also need to be added to the LD_LIBRARY_PATH
environment variable.

Compiling with Maverik
======================

The Makefiles for the example programs have been made as simple as
possible so as to allow them to be used for compiling your own Maverik
programs (or indeed versions of the examples that have been copied
into a users workspace and modified). To use these Makefiles you
will need to set the following environment variables:

1) MAV_HOME to indicate where Maverik is installed
e.g. export MAV_HOME=/usr/local/maverik-6.2

2) CC to specify the various compiler options
e.g. for RedHat
export CC="gcc -O2 -finline-functions -fomit-frame-pointer -funroll-loops -ffast-math -march=‘uname -m‘"

e.g. for Irix6 with an R10k processor
export CC="cc -n32 -mips4 -r10000 -O3"

Both of these environment variables are correctly set for you when the
example are automatically compiled.

Contents
========

The Maverik distribution contains the source code, include files,
worked example programs and documentation consisting of a Programmers
Guide (to accompany the examples) and a Functional Spec. Also
available via a separate download is a Maverik "demos" distribution
which contains a number of applications that have been developed using
Maverik.

The tar file creates the following directory structure:

maverik-6.2
|
+-- demos (essentially empty, available as a separate download)
|
+-- doc
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| |
| +-- MPG (Maverik Programmers Guide)
| | |
| | +-- sub-directories for postscript and pdf versions
| |
| +-- MFS (Maverik Functional Specification)
| |
| +-- sub-directories for postscript, pdf, HTML and man page versions
|
+-- examples
| |
| +-- MPG
| |
| +-- kernel
| |
| +-- misc
| |
| +-- various sub-directories
|
+-- incl
|
+-- lib
|
+-- src
| |
| +-- SMS
| |
| +-- callbacks
| |
| +-- extras
| | |
| | +-- various sub-directories
| |
| +-- gfx
| |
| +-- kernel
| |
| +-- navigation
| |
| +-- objects
| |
| +-- windows
|
+-- vc++ (workspace and project files for compiling with Visual C++)



Appendix B

The default objects

MAVERIK provides the following sets of default objects:

� 15 solid 3D object “primitives”: box, pyramid, cylinder, cone, sphere, half sphere, ellipse, half
ellipse, circular torus, rectangular torus, polygon, polygon group, facet, rectangle and teapot;

� 2 line-based, rather than solid, objects: the polyline and text. These allow for the definition of
objects comprising 3D lines and text respectively;

� 2 “composite” objects, i.e. built from a collection of other objects;

The data structures used to represent these objects are detailed in the following sections. Each of these
data structures can act as a starting point for customizing the object.

There are 3 fields common to all the object data structures: sp, matrix and userdef.

� sp – specifies which set of surface parameters are to be used to render this object. This is a
pointer thus allowing a set of objects to share a single set of parameters. The MAV surfaceParams
data structure is described in Chapter 6.1 (page 55).

� matrix – a transformation matrix which maps the object’s local coordinate system into the
world coordinates used by the application, defining its position, orientation and scale.

� userdef – a void pointer which can be cast by an application to point to its own data structures.
This provides a quick way of adding application specific data structures to a default object
without the need for modifying its data structure and source code. The use of this feature is
demonstrated in Chapter 5.3 (page 52).

It only make scene for the line-based objects to be rendered with an emissive colour. Using any other
colouring scheme for their surface parameters leads to undefined results.
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Textures can be mapped onto the surface of a solid object in a number of different ways. The manner
in which it is implemented for these objects should be viewed, like the data structures, as something
to be customized to fit an application’s own needs.

All objects have:

� an object class name mav class *;

� a data structure of the form MAV *;

� a rendering callback function mav *Draw;

� a bounding box callback function mav *BB;

� an intersection callback function mav *Intersection;

� an identify callback function mav *ID;

� a get matrix callback function mav *GetMatrix;

� a get userdef callback function mav *GetUserdef;

� a get surface parameters callback function mav *GetSurfaceParams;

� a dump callback function mav *Dump.

The source code for the default objects can be found in the src/objects sub-directory of the MAVERIK

distribution. The code to render the objects is written in MAVERIK’s abstracted graphics layer, which
is described in Chapter 7.3.3 (page 79) and should be familiar to anyone with a working knowledge
of OpenGL.

In the following subsections the diagrams employ a right-handed coordinate system and a cross-hair
marks the origin where applicable.
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B.1 Box

An axis-aligned box is defined with its center at the origin. It has a dimension, size, along the X ,Y
and Z axis.

X size

Y size

Z size

Data structure:
typedef struct {

MAV_vector size;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_box;
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B.2 Pyramid

A pyramid is defined with its centre at the origin. Its top and bottom faces, which are in the XY plane,
have a size [top|bot] size [x|y]. The pyramid has a height, height, along the Z axis. The X ,Y
centres of the top and bottom faces are offset by offset x and offset y respectively.

Bot X Size
Bot Y Size

height

Top Y size
Top X size

Data structure:
typedef struct {

float bot_size_x;
float bot_size_y;
float top_size_x;
float top_size_y;
float offset_x;
float offset_y;
float height;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_pyramid;
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B.3 Cylinder

The cylinder is defined with its centre at the origin and its axis aligned along the Z axis. It has a radius,
radius, and a height, height, along the Z axis.

X

Z

radius

height

When rendered, nverts vertices are used (if mav opt curveLOD is not set) to facet the curved surface
of the cylinder, and the symbolic constant endcap, set to MAV TRUE or MAV FALSE, control whether or
not the object has endfaces or is effectively hollow.

Data structure:
typedef struct {

float radius;
float height;
int nverts;
int endcap;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_cylinder;
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B.4 Cone

The cone is defined with its centre at the origin and its axis aligned along the Z axis. It has a radius at
its top, rt, a radius at its bottom, rb, and a height, height, along the Z axis.

Z

rt

rb

height X

When rendered, nverts vertices are used (if mav opt curveLOD is not set) to facet the curved surface
of the cone, and the symbolic constant endcap, set to MAV TRUE or MAV FALSE, control whether or not
the object has endfaces or is effectively hollow.

Data structure:
typedef struct {

float rt;
float rb;
float height;
int nverts;
int endcap;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_cone;
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B.5 Sphere

A sphere is defined with its centre at the origin with a radius radius.

radius

Z

When rendered, nverts vertices are used to facet the curved surface of the sphere around the Z axis,
and nchips vertices around the X axis from -90 to 90 degrees. Both values are only applicable if
mav opt curveLOD is not set.

Data structure:
typedef struct {

float radius;
int nverts;
int nchips;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_sphere;
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B.6 Half sphere

The half sphere is defined as the positive Z half-space of a sphere.

radius

Z

When rendered, nverts vertices are used to facet the curved surface of the half sphere around the Z
axis, and nchips vertices around the X axis from 0 to 90 degrees. Both values are only applicable if
mav opt curveLOD is not set. The symbolic constant endcap, set to MAV TRUE or MAV FALSE, control
whether or not the object has an endface or is effectively hollow.

Data structure:
typedef struct {

float radius;
int nverts;
int nchips;
int endcap;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_hsphere;
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B.7 Ellipse

An ellipse is defined with its centre at the origin and with a radius, height, along the Z axis and a
radius, radius, in the XY plane.

radius

height

Z

When rendered, nverts vertices are used to facet the curved surface of the ellipse around the Z axis,
and nchips vertices around the X axis from -90 to 90 degrees. Both values are only applicable if
mav opt curveLOD is not set.

Data structure:
typedef struct {

float radius;
float height;
int nverts;
int nchips;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_ellipse;
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B.8 Half ellipse

The half ellipse is defined as the positive Z half-space of an ellipse.

height

radius

Z

When rendered, nverts vertices are used to facet the curved surface of the half ellipse around the Z
axis, and nchips vertices around the X axis from 0 to 90 degrees. Both values are only applicable if
mav opt curveLOD is not set. The symbolic constant endcap, set to MAV TRUE or MAV FALSE, control
whether or not the object has an endface or is effectively hollow.

Data structure:
typedef struct {

float radius;
float height;
int nverts;
int nchips;
int endcap;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_hellipse;
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B.9 Circular torus

The circular torus (a torus with a circular cross section) is defined with its centre at the origin and with
a major radius, rmajor, a minor radius, rminor, and to an angular extent, angle, in radians from the
X axis around the Z axis.

angle

Z

rmajor
rminor

X

When rendered, nverts vertices are used to facet the curved surface defined by the minor radius, and
nchips vertices the curved surface defined by the major radius. Both values are only applicable if
mav opt curveLOD is not set. The symbolic constant endcap, set to MAV TRUE or MAV FALSE, control
whether or not the object has endfaces or is effectively hollow.

Data structure:
typedef struct {

float rmajor;
float rminor;
float angle;
int nverts;
int nchips;
int endcap;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_ctorus;
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B.10 Rectangular torus

The rectangular torus (a torus with a rectangular cross section) is defined with the centre at the origin
and with a radius, radius, a height, height, width, width and to an angular extent, angle, in radians
from the X axis around the Z axis.

Z

angle

height

width

Xradius

When rendered, nchips vertices are used (if mav opt curveLOD is not set) to facet the curved surface
defined by the radius. The symbolic constant endcap, set to MAV TRUE or MAV FALSE, control whether
or not the object has endfaces or is effectively hollow.

Data structure:
typedef struct {

float radius;
float width;
float height;
float angle;
int nchips;
int endcap;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_rtorus;
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B.11 Polygon

A polygon is defined by a number, np, of points, a normal, norm, and collection of vertices, vert,
and, optionally, texture coordinates, tex. The polygon must be convex, planar and the vertices ordered
anti-clockwise around the normal.

V3 x,y,z

V0 x,y,z

Normal x,y,z

V2 x,y,z

V5 x,y,z

V4 x,y,z

V1 x,y,z

Texture coordinates must be provided is this object is to be textured.

Data structure:
typedef struct {

int np;
MAV_vector norm;
MAV_texCoord *tex;
MAV_vector *vert;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_polygon;
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B.12 Polygon group

A polygon group is a number, npolys, of polygons, each defined as above, which share a common
transformation matrix. Polygon groups can be used to define objects which comprise of many poly-
gons without the rendering inefficiency of each polygon having an individual transformation matrix.

Poly 1V00 x,y,z

V03 x,y,z
V02 x,y,z

V01 x,y,z Poly 2
V10 x,y,z V11 x,y,z

V12 x,y,z

N0 x,y,z N1 x,y,z

Data structure:
typedef struct {

int npolys;
int *np;
MAV_vector *norm;
MAV_texCoord **tex;
MAV_vector **vert;
MAV_surfaceParams **sp;
MAV_matrix matrix;
void *userdef;

} MAV_polygonGrp;
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B.13 Facet

A facet is a number of polygons which share a common transformation matrix and which allow a
normal to be defined for each vertex, rather than for each polygon, thus allowing Gouraud shading
across the face of the polygon. They are defined in a similar manner to the polygon group, but with a
normal, norm, per vertex.

Poly 2

N10 x,y,z

V10 x,y,z

N11 x,y,z

V11 x,y,z

V12 x,y,z

N12 x,y,z

Poly 1V00 x,y,z

N00 x,y,z

V01 x,y,z

V02 x,y,z

N02 x,y,z

N01 x,y,z

N03 x,y,z

V03 x,y,z

Data structure:
typedef struct {

int npolys;
int *np;
MAV_vector **norm;
MAV_texCoord **tex;
MAV_vector **vert;
MAV_surfaceParams **sp;
MAV_matrix matrix;
void *userdef;

} MAV_facet;
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B.14 Rectangle

The rectangle allows for a simple definition of the common case of a 4-vertex polygon centred at the
origin with its normal aligned along the positive Z axis. Is is defined by its width and height along
the X and Y axis respectively.

width

heightX

Y

If textured, it is tiled a number of time in the horizontal, xtile, and vertical, ytile, directions.

Data structure:
typedef struct {

float width;
float height;
float xtile;
float ytile;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_rectangle;
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B.15 Teapot

The classic computer graphics teapot without which no Virtual Environment is complete. The teapot
is orientated with its Y axis as “up” and the spout pointing along the positive X axis. The teapot has
an extent size between the edge of the handle and the tip of the spout. The bezier surfaces by which
the teapot is defined are subdivided subdivisions times when rendered (if mav opt curveLOD is not
set).

The type of tea used to brew-up is governed by the enumerated constant teabag which is set to either
TETLEY, PG TIPS or EARL GREY. The amount of sugar used is controlled by lumps, in units of heaped
teaspoons, and should be set to less than 2 otherwise you’ll get fat and rot your teeth.

Data structure:
typedef struct {

float size;
int subdivisions;
MAV_teabag teabag;
int lumps;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_teapot;
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B.16 Polyline

A polyline is a number, nlines, of lines each consisting of a number, np, of vertices, vert, each
connected by a line. closed indicates if the last vertex connects back to the first.

V10 x,y,z

V12 x,y,z

V11 x,y,z

V00 x,y,z V01 x,y,z

V02 x,y,z

V03 x,y,zV04 x,y,z

Since it only make sense for this object to be rendered with an emissive colour, attempting to render
it with a material or texture gives undefined results.

Data structure:
typedef struct {

int nlines;
int *np;
int *closed;
MAV_vector **vert;
MAV_surfaceParams **sp;
MAV_matrix matrix;
void *userdef;

} MAV_polyline;
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B.17 Text

The text object allows 3D text to be rendered in a scene. The text, text, is defined in the XY plane
with the tallest character being approximately 1 unit along the Y axis. The origin is halfway up the
text and, depending on the value of justify, set to MAV [LEFT|CENTRE|RIGHT] JUSTIFY, is either
at the left edge of the text, at its centre or at the right edge respectively. style can take the value
MAV [STROKE|OUTLINE|FILLED] FONT, to produce the fixed point and proportional styles of text
shown below.

Data structure:
typedef struct {

char *text;
int style;
int justify;
MAV_surfaceParams *sp;
MAV_matrix matrix;
void *userdef;

} MAV_text;
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B.18 Composite object

A composite object is a number, numobj, of objects which are first transformed by a common trans-
formation matrix, matrix, before being transformed by their individual transformation matrices. The
objects are defined as an array, obj, of pointers to MAVERIK objects. Once defined, the objects com-
prising the composite object must remain static, i.e. changing the number of objects in it, or any details
of those objects, is forbidden. And since the contents are static, a local coordinate frame bounding
box is stored in bb for efficiency.

Composite objects are not intended to be defined directly by an application, but rather by routines such
as mav compositeRead, which defines a composite object from a VRML97, Lightwave or AC3D
format file (as shown below).

If a composite object is selected via the usual mechanism then the integer selobj holds the array
element of the selected sub-object.

Data structure:
typedef struct {

int numobj;
MAV_object **obj;
MAV_BB bb;
int selobj;
char *filename;
MAV_matrix matrix;
void *userdef;

} MAV_composite;
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B.19 SMS object

An SMS object contains an SMS, sms, of objects which are first transformed by a common transfor-
mation matrix, matrix, before being transformed by their individual transformation matrix. Objects
can be freely added to and removed from the SMS using the usual functions for manipulating SMS’s.

An SMS object can be added as an object to any other SMS object, enabling hierarchical structures to
be constructed.

If this object is selected via the usual mechanism then selobj holds a pointer to the selected sub-
object.

Data structure:
typedef struct {

MAV_SMS *sms;
MAV_object *selobj;
MAV_matrix matrix;
void *userdef;

} MAV_SMSObj;
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Appendix C

MAVERIK global variables

There are three categories of global variables:

� options variables: these control MAVERIK’s initialisation and subsequent behaviour.

� information variables: these reflect the current state of MAVERIK.

� classes and callbacks variables: these act as identifiers to various MAVERIK functions.

Application’s can only change the values of the first set of global variables – the options – the other
two sets should be treated as read only. Furthermore, if an application wishes to change the default
value of an options variable, it must do so prior to calling mav initialise unless otherwise stated.

C.1 Options variables

The following variables controls options for the kernel, windows, stereo display, graphics, and
objects.

C.1.1 Kernel options

� int mav opt output – controls the amount of informational messages written to stdout. If
MAV VERBOSE, all messages are printed; if MAV SILENT, no messages are printed. Default value:
MAV VERBOSE. This variable can be modified at anytime.

� int mav opt objectTables – if MAV TRUE, indicates that object tables are to be used. Ob-
ject tables allow for efficient conversion between application objects and their corresponding
MAVERIK objects, and also keep track of which SMSs objects are in (allowing deleted objects
to be automatically removed from their SMSs). Object tables require memory and applications
which are very short of memory may wish to disable object tables by setting this variable to
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MAV FALSE. However, this is recommended only for experienced users familiar with the inter-
nal workings of MAVERIK. Default value: MAV TRUE.

� int mav opt fixedRnd – if MAV TRUE, indicates that the pseudo-random sequence returned
by the mav random function should be from a fixed set of 5000 random numbers, rather than
calling drand48. This is useful in debugging applications across platforms since the result of
drand48 is platform-dependent. Default value: MAV FALSE. This variable can be modified at
anytime.

� int mav opt maxColours – the maximum number of emissive colours available in a palette.
Default value: 150.

� int mav opt maxMaterials – the maximum number of materials available in a palette. Default
value: 150.

� int mav opt maxTextures – the maximum number of textures available in a palette. Default
value: 150.

� int mav opt maxFonts – the maximum number of fonts available in a palette. Default value:
10.

� int mav opt maxLights – the maximum number of lights available in a palette. Default value:
5.

� int mav opt paletteWarn – whether or not to generate a warning if the contents of a palette
are redefined. Default value: MAV TRUE. This variable can be modified at anytime.

� int mav opt defaultInit – whether or not the kernel should initialise the default set of mod-
ules (if it does not the user is responsible for performing this step). Default value: MAV TRUE.

C.1.2 Window control options

These options determine the size and placement of the window opened by mav initialise. See also
Section C.1.3 for how these options relate to a pair of windows for stereo viewing.

� int mav opt noWins – if MAV TRUE, do not open a window. Default value: MAV FALSE.

� int mav opt fullscreen – if MAV TRUE, open the window fullscreen. Default value: MAV FALSE.

� int mav opt x – x position of left-hand edge of window. Default value: left-hand edge of
screen.

� int mav opt y – y position of top edge of window. Default value: half way up screen (or top
of screen if Voodoo acceleration is active).

� int mav opt width – width of window. Default value: half screen size (or 640 if Voodoo
acceleration is active).

� int mav opt height – height of window. Default value: half screen height (or 480 if Voodoo
acceleration is active).
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� char *mav opt name – name to be placed in window title bar. Default value: name of exe-
cutable (which is followed by “left” for a stereo configuration).

� char *mav opt disp – name of X server on which to open window. Default value: NULL (the
DISPLAY environment variable is used).

Note: honouring the requested window size, placement and title bar status is at the discretion of the
window manager.

The following variables control the graphical context of a window opened by mav windowNew (and
hence by mav initialise):

� int mav opt singleBuf - requests a single buffered context. Default value: MAV FALSE. This
variable can be modified at anytime.

� int mav opt quadBuf - requests a quad buffered context. This is one way of generating stereo
output and is typically employed with LCD shutter glasses. If a windows is opened with a quad-
buffered context requested, any un-allocated right buffers in existing contexts are used before
a new window and context are created. Acceptable true values are MAV STEREO QUAD BUFFERS
and MAV STEREO QUAD BUFFERS SEPARATE Z (for machines which have separate depth buffers).
Default value: MAV FALSE. This variable can be modified at anytime.

� int mav opt multiSample - requests a multisampled context. Default value: MAV FALSE. This
variable can be modified at anytime.

� int mav opt accumBuf - requests an accumulation buffered context. Default value: MAV FALSE.
This variable can be modified at anytime.

� int mav opt stencilBuf - requests a stencil buffered context. Default value: MAV FALSE. This
variable can be modified at anytime.

� int mav opt destAlpha - requests a destination alpha buffered context. Default value: MAV FALSE.
This variable can be modified at anytime.

� int mav opt shareContexts - requests that multiple contexts share a common set of display
lists, textures etc. The first window opened is the “master” context and as such cannot be
deleted. Default value: MAV TRUE. This variable can be modified at anytime.

� int mav opt WMPlacement - if MAV TRUE, let the window manager choose the position of the
window. Default value: MAV FALSE. This variable can be modified at anytime.

� int mav opt restrictMouse - if MAV TRUE, then prevent the mouse from moving outside the
window. Default value: MAV FALSE (or MAV TRUE if Voodoo acceleration is active). This vari-
able can be modified at anytime.

� int mav opt flush - requests that a glFlush be performed before swapping the buffers. De-
fault value: MAV FALSE. This variable can be modified at anytime.

� int mav opt finish - requests that a glFinish be performed before swapping the buffers.
Default value: MAV FALSE. This variable can be modified at anytime.
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� int mav opt syncSwap - requests that swapping buffers in multiple windows is synchronized
(if supported by the hardware). Default value: MAV FALSE.

C.1.3 Stereo configuration options

There are basically two ways of achieving stereo output (see Section 6.2.3, page 62). But however
it’s achieved, it’s helpful to think of having have two separate windows (even if these in fact map onto
one physical display area). The following variables control stereo viewing:

� int mav opt stereo – if set to something other than MAV FALSE, this variable indicates that
a pair of windows should be opened. Supported stereo configuration are MAV STEREO TWO WINS,
MAV STEREO QUAD BUFFERS and MAV STEREO QUAD BUFFERS SEPARATE Z. Default value: MAV FALSE.

� int mav opt right x – x position of left-hand edge of right-hand window. Default value: half
width of screen.

� int mav opt right y – y position of top edge of right-hand window. Default value: half way
up screen (or top of screen if Voodoo acceleration is active).

� int mav opt right width – width of right-hand window. Default value: half screen width (or
640 if Voodoo acceleration is active).

� int mav opt right height – height of right-hand window. Default value: half screen height
(or 480 if Voodoo acceleration is active).

� char *mav opt right name – name for right-hand window titlebar. Default value: name of
the executable followed by “right”.

� char *mav opt right disp – name of X server on which to open right-hand window. Default
value: NULL (the DISPLAY environment variable is used).

C.1.4 Graphics options

The following variables set various graphics rendering options:

� int mav opt trans – if MAV TRUE, MAVERIK attempts to correctly deal with transparent ob-
jects. This is achieved by detecting the objects which are transparent and rendering them in
depth sorted order at the end of the frame. Default value: MAV FALSE. This variable can be
modified at anytime.

An example program showing the use of transparent objects is given in the examples/misc/transparent
sub-directory of the MAVERIK distribution.

� int mav opt delayTexture – if MAV TRUE, MAVERIK attempts to efficiently deal with textured
objects. This is achieved by rendering all textured objects at the end of a frame, potentially
minimizing the context changes made by the graphics pipe and so increasing performance.
Default value: MAV FALSE. This variable can be modified at anytime.
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� int mav opt bindTextures – if MAV TRUE, indicates that texture maps should be “bound” for
efficiency. For details, see the OpenGL documentation. Default value: MAV TRUE.

� int mav opt texComps – the number of colour components that OpenGL will use for the inter-
nal storage of textures. For details, see the OpenGL documentation. A value of 1 indicates that
a texture will be stored internally as a luminance map, a value of 3 indicates that RGB values
will be stored and a value of 4, the default, indicates RGBA values will be stored. Use a value
of 3 if no alpha component is needed and texture memory is scarce or the number of bits to
represent each texel is limited (for example the Voodoo chipset which is 16 bit).

� int mav opt mipmapping – if MAV TRUE, indicates that texture maps should be mipmapped.
Default value: MAV FALSE.

Note: mav paletteTextureMipmappingSet can be used to override the global default for
individual textures. An example program showing the use of mipmapping is given in the
examples/misc/textures sub-directory of the MAVERIK distribution.

� int mav opt trackMatrix – indicates if changes to the model view graphics matrix stack
should be tracked and stored in the MAV window data structure. Recognised values for this
variable are:

– MAV FALSE – no tracking.

– MAV TRUE – track model view changes and store in viewMat field of MAV window.

– MAV PROJANDVIEW – as MAV TRUE, but also multiplies the current view by the current pro-
jection matrix and stores the result in the pdvMat field of MAV window.

If this data is frequently used by the application, it is more efficient to track changes in the
matrix rather than repeatedly requesting its current value with mav gfxMatrixGet. Default
value: MAV FALSE. This variable can be modified at anytime.

C.1.5 Object options

The following variables set options which control the behaviour of the default objects:

� int mav opt BBMethod – indicates which bounding box callback should be registered for the
default objects. Setting to MAV BB FAST selects a fast but potentially pessimistic bounding box
calculation; setting to MAV BB ACCURATE selects a slower but more accurate calculation. Obvi-
ously, these terms are relative. Default value: MAV BB ACCURATE.

� int mav opt compositeSetMatrix – if MAV TRUE, indicates that the mav compositeRead
family of functions should set a composite object’s matrix to MAV ID MATRIX. Default value:
MAV TRUE. This variable can be modified at anytime.

� int mav opt curveLOD – if MAV TRUE, indicates that level-of-detail (LOD) should be per-
formed on objects with curved surfaces, i.e. MAVERIK will ignore the nverts and/or nchips
values and render the object with as many, or as few, facets as it deems necessary to accu-
rately represent the curved surface. Default value: MAV FALSE. This variable can be modified at
anytime.
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� int mav opt vertsMin – the minimum number of vertices that will be used to render an object
undergoing LOD processing. Default value: 6. This variable can be modified at anytime.

� int mav opt vertsMax – the maximum number of vertices that will be used to render an object
undergoing LOD processing. Default value: 20. This variable can be modified at anytime.

� float mav opt curveFactor – an arbitrary constant controlling the rate at which the number
of vertices that will be used to render an object undergoing LOD processing is reduced as the
object recedes from the eye point. Default value: 10000. This variable can be modified at
anytime.

� float mav opt drawNormals – if set to a value of less than 1000000, then draw the normals of
the polygons which comprise the following default objects: facet, polygon group, rectangle and
polygon. The value of this variable defines the magnitude of the displayed normal vector. Dis-
playing a polygon’s normal can help identify lighting problems. Default value: MAV INFINITY.
This variable can be modified at anytime.

� int mav opt VRML97HBBThreshold – the number of objects above which an HBB SMS, rather
than an object list SMS, is used to hold the objects in a VRML97 file. Default value: 0 (always
use a HBB). This variable can be modified at anytime.

� int mav opt VRML97CleanUp – if MAV TRUE, then clean up the data structures used to parse
a VRML97 file. This option only exists to overcome a bug in the VRML97 parser which
sometimes occurs for large models. Default value: MAV TRUE. This variable can be modified at
anytime.

C.1.6 Miscellaneous options

The following variables describe various miscellaneous options:

� int mav opt navPassEvents – controls whether or not keyboard and mouse navigation events
are also passed on to application defined event handling callbacks where applicable. Default
value: MAV TRUE (pass on events where applicable). This variable can be modified at anytime.

� char * mav opt TDMLib – defines the library to dynamically load to provide the implementa-
tion of the TDM interface. Default value: NULL (prompt user – there is no meaningful default).

� MAV vector mav nav center – defines the center of rotation for the navigators. Default value:
the origin.

C.2 Information variables

The following variables are maintained by MAVERIK, and should be treated as read-only. If an
application changes the value of any of these variables, the results will be unpredicatble.



C.2. INFORMATION VARIABLES 163

C.2.1 Window information

� MAV window *mav win mono – the handle to the single window in a mono configuration, or the
left window in a stereo configuration.

� MAV window *mav win left – same as mav win mono.

� MAV window *mav win right – the handle to the right window in a stereo configuration. Un-
defined for a mono configuration.

� MAV window *mav win all – a handle to all windows. Setting parameters, such as callbacks
and perspective, using mav win all will effect all open windows.

� MAV window *mav win current – a handle to the current active rendering window.

� MAV list *mav win list – a MAV list containing the handles of all open windows.

C.2.2 Frame information

� float mav fps – the current frame rate (expressed as frames per second). This is computed
from the elpased wallclock time between the most recent calls to mav frameBegin and mav frameEnd.

� float mav fps avg – the frame rate (expressed as frames per second) averaged over the last
second.

� int mav firstFrame – MAV TRUE only for the very first frame.

� int mav frameCount – a counter incremented at the end of each frame.

� int mav drawingMouse – MAV TRUE if a mouse cursor is being drawn by MAVERIK as a cross.

� int mav navigating – the number of default navigators currently active.

� int mav needFrameDraw – the logical OR of mav firstFrame, mav drawingMouse and mav navigating.
A “true” value indicates that a frame needs to be drawn even though an event hasn’t occurred.

C.2.3 Mouse information

� MAV window *mav win mouse – the handle of the window the mouse is currently in.

� int mav mouse x – the mouse’s horizontal position in pixels relative to the origin of the window
it’s in.

� int mav mouse y – the mouse’s vertical position in pixels relative to the origin of the window
it’s in.

� int mav mouse root x – as for mav mouse x but relative to the root window.

� int mav mouse root y – as for mav mouse y but relative to the root window.
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� int * mav mouse button – an array holding the status (MAV PRESSED or MAV RELEASED) of
each mouse button. Currently this is only supported on Unix machines. Valid array indices are:
MAV [LEFT|MIDDLE|RIGHT] BUTTON.

The raw mouse information above is calculated as part of the mouse device poll function, and is
updated once per frame in mav frameBegin.

The following mouse information can only be calculated once an eyepoint has been defined and is
therefore not available to functions registered with mav frameFn1Add (see mav frameBegin).

� MAV vector mav mouse pos – the 3D position of the mouse when mapped onto a plane parallel
to the near clip plane but at twice the near clip plane distance. The reason that the near clip
plane itself is not used is that it would rule out anything being rendered at this position.

� MAV vector mav mouse dir – the normalized vector from the current eye position through
mav mouse pos.

C.2.4 Graphics information

The following variables are defined by the OpenGL implementation being used:

� char * mav gfx vendor – see OpenGL documentation for description.

� char * mav gfx renderer – see OpenGL documentation for description.

� char * mav gfx version – see OpenGL documentation for description.

Note: a valid OpenGL context has to be created, i.e. a window opened, before their value is set.

C.2.5 Miscellaneous information

� int mav xres – the horizontal resolution of the screen in pixels.

� int mav yres – the vertical resolution of the screen in pixels.

� int mav this version – the value of MAV THIS VERSION, which is defined in the header file
and is unique to a given version, when the library was compiled. This variable can be checked at
run-time against the value of MAV THIS VERSION to ensure that an application is compiled with
and linked against the same version of MAVERIK. The variable can also be checked against the
values of the MAV VERSION macro to determine which version of the library the application is
linked with.

� MAV list *mav module list – a MAV list containing the identify function for all registered
modules.
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� MAV list *mav sms list – a MAV list containing all SMS’s.

� MAV list *mav palette list – a MAV list containing all palettes.

� MAV list *mav object list – a MAV list containing all registered objects (requires mav opt objectTables
to be MAV TRUE). Note that this list will contain the system defined objects mav object world,
mav object any, and mav object none.

� MAV list *mav transObjList – a MAV list maintained on a per-frame basis for storing in-
formation to allow transparent objects to be rendered correctly.

� MAV palette *mav palette default – the palette windows are associated with until reas-
signed with mav windowPaletteSet. Unlike mav win all, values set for this palette do not
act on all palettes.

� MAV surfaceParams *mav sp current – the current surface parameters.

� MAV surfaceParams *mav sp default – the default surface parameters (a red material).

The following numeric values are, by necessity, implemented as constant global variables rather than
#defines.

� const MAV vector MAV NULL VECTOR – the vector (0,0,0).

� const MAV vector MAV X VECTOR – the vector (1,0,0).

� const MAV vector MAV Y VECTOR – the vector (0,1,0).

� const MAV vector MAV Z VECTOR – the vector (0,0,1).

� const MAV matrix MAV ID MATRIX – the identity matrix.

� const MAV quaternion MAV ID QUATERNION – the identity quaternion [1,(0,0,0)].

C.3 Class and callback variables

C.3.1 Object classes

The following object classes are defined on initialisation to represent the default shapes. Each of the
object classes are fully described in Appendix B.

� MAV class *mav class box – a handle to the box object.

� MAV class *mav class pyramid – a handle to the pyramid object.

� MAV class *mav class cylinder – a handle to the cylinder object.

� MAV class *mav class cone – a handle to the cone object.
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� MAV class *mav class sphere – a handle to the sphere object.

� MAV class *mav class hsphere – a handle to the half sphere object.

� MAV class *mav class ellipse – a handle to the ellipse object.

� MAV class *mav class hellipse – a handle to the half ellipse object.

� MAV class *mav class ctorus – a handle to circular cross-section torus object.

� MAV class *mav class rtorus – a handle to the rectangular cross-section torus object.

� MAV class *mav class polygon – a handle to the polygon object.

� MAV class *mav class polygonGrp – a handle to the polygon group object.

� MAV class *mav class facet – a handle to the facet object.

� MAV class *mav class rectangle – a handle to the rectangle object.

� MAV class *mav class polyline – a handle to the polyline object.

� MAV class *mav class text – a handle to the text objet.

� MAV class *mav class composite – a handle to the composite object.

� MAV class *mav class SMSObj – a handle to the SMS object.

� MAV class *mav class all – a handle to all objects.

Callbacks set for mav class all take precedence over one defined for a specific object class.

C.3.2 Miscellaneous classes

The following classes are defined on initialisation to enable event-based callbacks to be defined which
do not occur on a per-object class basis.

� MAV class *mav class world – to trap events regardless of where the mouse is pointing.

� MAV class *mav class any – to trap events which occur when the mouse is pointing at an
object, but regardless of the class of the object.

� MAV class *mav class none – to trap events which occur when the mouse is not pointing at
any object.

The MAVERIK objects passed to the event callback function set for one of the above classes are
respectively mav object world, mav object any, and mav object none. No attempt should be
made to interpret the data portion of these MAVERIK objects.

Events set for mav class world take precedence over those set for mav class any, which in turn
take precedence over those set for a particular object class.
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C.3.3 Object-based callback functions

These callback functions are defined on initialisation to act on objects.

� MAV callback *mav callback delete – a handle to the “delete” callback.

� MAV callback *mav callback draw – a handle to the “draw” callback.

� MAV callback *mav callback BB – a handle to the “calculate bounding box” callback.

� MAV callback *mav callback intersect – a handle to the “object-line intersection test”
callback.

� MAV callback *mav callback id – a handle to the “identify” callback.

� MAV callback *mav callback dump – a handle to the “dump” callback.

� MAV callback *mav callback getUserdef – a handle to the “get userdef” callback.

� MAV callback *mav callback getMatrix – a handle to the “get matrix” callback.

� MAV callback *mav callback getSurfaceParams – a handle to the “get surface parame-
ters” callback.

Note that any callback defined for mav class all takes precedence over one defined for a specific
object class.

C.3.4 Event-based callback functions

These callback functions are defined on initialisation to trap events.

� MAV callback *mav callback keyboard – a handle to the keyboard callback.

� MAV callback *mav callback sysKeyboard – a handle to the system reserved keyboard call-
back.

� MAV callback *mav callback leftButton – a handle to the left mouse button callback.

� MAV callback *mav callback middleButton – a handle to the middle mouse button call-
back.

� MAV callback *mav callback rightButton – a handle to the right mouse button callback.

� MAV callback *mav callback anyButton – a handle to the any mouse button callback.

� MAV callback *mav callback sysMouse – a handle to the system reserved mouse callback.

� MAV callback *mav callback resize – a handle to the resize callback.
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� MAV callback *mav callback map – a handle to the mapping callback.

� MAV callback *mav callback crossing – a handle to the crossing callback.

� MAV callback *mav callback expose – a handle to the expose callback.

A callback set for mav callback anyButton will take precedence over one set for a particular button.

C.3.5 SMS classes

The following SMS classes are defined on initialisation.

� MAV SMSClass *mav SMSClass objList – the simple linked-list SMS.

� MAV SMSClass *mav SMSClass HBB – the Hierarchical Bounding Box SMS.

C.3.6 SMS callback functions

The following SMS callback functions are defined on initialisation to act on an SMS.

� MAV SMSCallback *mav SMSCallback delete – a handle to the “delete SMS” callback.

� MAV SMSCallback *mav SMSCallback objectRmv – a handle to the “remove object from SMS”
callback.

� MAV SMSCallback *mav SMSCallback objectAdd – a handle to the “add object to SMS” call-
back.

� MAV SMSCallback *mav SMSCallback intersect – a handle to the “SMS-line intersection
test” callback.

� MAV SMSCallback *mav SMSCallback pointerReset – a handle to the “reset SMS contents
pointer” callback.

� MAV SMSCallback *mav SMSCallback pointerPush – a handle to the “push SMS contents
pointer” callback.

� MAV SMSCallback *mav SMSCallback pointerPop – a handle to the “pop SMS contents pointer”
callback.

� MAV SMSCallback *mav SMSCallback objectNext – a handle to the “get next object in SMS”
callback.

� MAV SMSCallback *mav SMSCallback execFn – a handle to the “execute function” callback.

� MAV SMSCallback *mav SMSCallback empty – a handle to the “SMS empty” callback.
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� MAV SMSCallback *mav SMSCallback size – a handle to the “get SMS size” callback.

� MAV SMSCallback *mav SMSCallback objectContains – a handle to the “SMS contains ob-
ject test” callback.
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Appendix D

Initialisation options

There are a number of ways of defining the various options that control the initialisation process. In
order of lowest precedence first, they are:

� defaults values

� read from a config file

� application specified (using the mav opt * variables)

� via environment variables

� specified on the command line

The meaning of the various options, their default values, and how an application can define these is
described in Appendix C (page 157). In the rest of this chapter we describe how the various options
can be set from outside of the application.

D.1 Configuration file

Upon initialisation MAVERIK looks for a file called .maverikrc (or maverik.ini under Window
and MacOS) first in the current directory and then in the user’s home directory. If found this file is
parsed. The format of the file is option-value pairs as follows:

verbose (0|1)
fixedRnd (0|1)
WMPlacement (0|1)
singleBuf (0|1)
multiSample (0|1)
bindTextures (0|1)

171



172 APPENDIX D. INITIALISATION OPTIONS

shareContexts (0|1)
flush (0|1)
finish (0|1)
syncSwap (0|1)
fullscreen (0|1)
stereo (0|quad|quad-sperate|two-wins)
restrictMouse (0|1)
display <X display string>
right_display <X display string>
geometry <X geometry string (widthxheight+xoff+yoff)>
right_geometry <X geometry string>
name <string>
right_name <string>
splash (0|1)
drawNormals <length>

Multiple options should be separated by a newline. Option identifier is case insensitive.

D.2 Environment variables

The following environment variables can be used to control initialisation:

MAV_VERBOSE (0|1)
MAV_FIXEDRND (0|1)
MAV_WMPLACEMENT (0|1)
MAV_SINGLEBUF (0|1)
MAV_MULTISAMPLE (0|1)
MAV_BINDTEXTURES (0|1)
MAV_SHARECONTEXTS (0|1)
MAV_FLUSH (0|1)
MAV_FINISH (0|1)
MAV_SYNCSWAP (0|1)
MAV_FULLSCREEN (0|1)
MAV_STEREO (0|quad|quad-separate|two-wins)
MAV_RESTRICTMOUSE (0|1)
MAV_DISPLAY <X display string>
MAV_RIGHT_DISPLAY <X display string>
MAV_GEOMETRY <X geometry string>
MAV_RIGHT_GEOMETRY <X geometry string>
MAV_NAME <string>
MAV_RIGHT_NAME <string>
MAV_SPLASH (0|1)
MAV_DRAWNORMALS <length>
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D.3 Command line arguments

In order to use the following command line arguments to control initialisation, mav initialise must
be used to initialise MAVERIK:

-verbose
-silent
-[no]fixedRnd
-[no]WMPlacement
-[no]singleBuf
-[no]multiSample
-[no]bindTextures
-[no]shareContexts
-[no]flush
-[no]finish
-[no]syncSwap
-[no]fullscreen
-[no]stereo (0|quad|quad-separate|two-wins)
-[no](restrictMouse|lockMouse)
-display <X display string>
-(geometry|geom) <X geometry string>
-name <string (quoted if containing spaces)>
-(right_display|rdisplay) <X display string>
-(right_geometry|rgeom) <X geometry string>
-(right_name|rname) <string (quoted if containing spaces)>
-[no]splash
-drawNormals <length>
-mavhelp
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Appendix E

Frequently Asked Questions

Frequently asked questions about GNU Maverik.

The latest version of this document can be found online at
http://aig.cs.man.ac.uk/maverik/faq.htm

Last changed: 10th January 02

---------------------------------------------------------------

Q1: Will Maverik run on <Insert your OS here>?
Q2: Does Maverik support the <Insert Peripheral Here>?
Q3: Does Maverik support the <Insert Graphics Card Here>?
Q4: My Maverik program doesn’t seem to work.
Q5: I get a "error in loading shared libraries" or "rld: Fatal

Error: Cannot Successfully Map soname" error.
Q6: I get a "MAV_HOME environment variable not set" error.
Q7: I get a "can’t open avatar curve file walking.cset" error message

when running the avatar example.
Q8: Why does Maverik run slowly on my old SGI?
Q9: Sometimes after my Maverik application has finished, the keyboard

repeat is disabled.
Q10: Where are the pull-down menus, sliders and other widgets?
Q11: Why is there no collision detection?
Q12: Can read in objects defined in <Insert File Format Here>?
Q13: My objects appear to be clipped to planes that don’t coincide

with the view frustum - I’m getting objects disappearing when
they get near the edge of the window.

Q14: Where is Spot The Dog?
Q15: Is Maverik thread-safe?
Q16: What about multi-distributed users?
Q17: Why are there ’get’ functions, but no complimentary ’set’ functions?

For example, there is a mav_callbackGetMatrixExec but no equivalent
mav_callbackSetMatrixExec?

Q18: I sometimes see a colour banding effect on objects - I get a
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saw-tooth pattern around the edges of objects?
Q19: How are MAV_matrix’s implemented/ordered?
Q20: Are applications written for Maverik version 4.x compatible with

version 5.x?
Q21: How do I recompile modified Maverik soure code, examples, or demos?
Q22: Why are some of the later chapters in the MPG missing?
Q23: Why are some of the functional specifications poorly documented

or blank?
Q24: Why do the man pages look horrible on SGI’s?
Q25: I get an "ld: cannot open -lGL: No such file or directory" error

when compiling Maverik
Q26: Why does mav_matrixRPYGet give the wrong results?
Q27: Why are the numbers returned by mav_fps and mav_fps_avg incorrect?
Q28: What are the issues when dealing with semi-transparent objects?
Q29: Are applications written for Maverik version 5.x compatible with

version 6.x?

---------------------------------------------------------------

Q1: Will Maverik run on <Insert your OS here>?

Maverik is available as source code and should compile under Windows,
MacOS and on UNIX systems - essentially any system that has OpenGL,
Mesa (version 3.1 or above), IrisGL or DirectX (version 8). However,
while it is possible to use any of these libraries, OpenGL/Mesa is
currently the best supported library for Maverik to use.

Maverik is known to run on RedHat 5.2 and 6.x; FreeBSD 3.2; SuSE 7.1,
Irix 5.3, 6.3 and 6.5; SunOS 5.7; MacOS and Windows 98, 2k and
NT. This list is not intended to be exhaustive but simply reflects
operating systems that we, or others, have access to and tried Maverik
with. Ports to other UNIX platforms should be fairly trivial and we
belive the code to work on Window 95.

Since we at the University of Manchester do not have access to
SunOS, SuSE, FreeBSD, or MacOS; new releases of Maverik cannot be
tested to ensure they will compile error-free on these platforms.

Feel free to contact us if you want more details of exactly what
porting to other platforms would involve.

---------------------------------------------------------------

Q2: Does Maverik support the <Insert Peripheral Here>?

A standard compilation of Maverik provides supports for a desktop
mouse, keyboard and screen. This makes it easy to try out the examples
and demonstrations.

The configuration of 3D peripherals used in VR labs tends to be site
specific. Code is included in the distribution to support Polhemus
FASTRAK and ISOTRAK II six degree of freedom trackers (optionally
coupled to Division 3D mice); Ascension Flock of birds (ERC only);
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Spacetec SpaceBalls and SpaceOrb360s; Magellan Space Mouse; InterSense
InterTrax 30 gyroscopic trackers; 5DT data gloves; and a serial
Logitech Marble Mouse. With modification other similar specification 6
DOF input devices/tracking technology can be supported. Code to support
IBM’s ViaVoice speech recognition engine is also provided. This code is
not compiled by default since it is not relevant to everyone and
requires some manual configuration. See the README in the src/extras
directory for more information.

We have also supported more peculiar peripherals in our own lab:
Microsoft SideWinder Force-Feedback joystick and our homebuilt MIDI
server. These are relatively uncommon devices and so are not included
in a "standard" Maverik release. However, if your interested in this
code drop us an e-mail.

---------------------------------------------------------------

Q3: Does Maverik support the <Insert Graphics Card Here>?

Maverik ultimately makes calls to a well supported graphics library
(OpenGL, IrisGL or DirectX) to perform its rendering. Therefore, if
these libraries are hardware accelerated by your graphics card, then
Maverik will be accelerated.

For SGI machines this process is seamless. Unfortunately, for PC’s
things get a little more complicated. Mesa, the freely available
OpenGL work-a-like, supports hardware acceleration for a number of
graphics boards [see http://mesa3d.sourceforge.net]. Alternatively,
the graphic card vendor may supply drivers. We have verified Maverik
with the following cards: Voodoo, Voodoo2, TNT, TNT2, GeForce 256,
GeForce2 and GeForce 3 based boards. See the Mesa web page for more
information and the README.3DFX file in the Mesa distribution for how
to compile Mesa to take advantage of Voodoo based graphics boards.

Maverik should automatically detect that a Voodoo based card is
present and that hardware acceleration has been requested (it
determines this from the MESA_GLX_FX environment variable). Under
these circumstances, the default window size is changed to a Voodoo
compatible 640x480 and the mouse pointer is restricted, by default,
to stay within the graphics window.

---------------------------------------------------------------

Q4: My Maverik program doesn’t seem to work.

That’s not a question.

---------------------------------------------------------------

Q5: I get a "error in loading shared libraries" or "rld: Fatal
Error: Cannot Successfully Map soname" error.

Maverik libraries are dynamically loaded and therefore you may need to
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include their location in the dynamic library search path environment
variable LD_LIBRARY_PATH (or possibly LD_LIBRARYN32_PATH on
Irix6). E.g.

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/maverik-6.2/lib

You may also need to include the location of the TDM libraries, if
used, in the LD_LIBRARY_PATH.

---------------------------------------------------------------

Q6: I get a "MAV_HOME environment variable not set" error.

Errr, like it says, your MAV_HOME environment variable is not
set. Some Maverik applications require this environment variable to
be set to point to the location of the Maverik distribution. E.g.

export MAV_HOME=/usr/local/maverik-6.2

Its good practice to set it regardless of whether your application
requires it or not.

---------------------------------------------------------------

Q7: I get a "can’t open avatar curve file walking.cset" error message
when running the avatar example.

Your MAV_HOME environment variable is incorrectly set.

---------------------------------------------------------------

Q8: Why does Maverik run slowly on my old SGI?

For older SGI machines (e.g. a Crimson) which are optimized for IrisGL
you need to run the Maverik setup script specifying the IrisGL option:
"setup --IrisGL" to generate a version of Maverik based on this
graphics library.

Note: IrisGL is no longer actively supported and its functionality may
differ from the OpenGL version of Maverik.

---------------------------------------------------------------

Q9: Sometimes after my Maverik application has finished, the keyboard
repeat is disabled.

This problem has been fixed in version 5.4. Thanks to Miklos Szeredi
for providing the patch.

---------------------------------------------------------------

Q10: Where are the pull-down menus, sliders and other widgets?
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Maverik is intended to be used to display a 3D "VR world" efficiently
and flexibly. As such, providing GUI functionality for an application
is outside of its scope.

That said, some GUI toolkits provide an OpenGL canvas widget which
Maverik can use as its rendering window. GTK+ and Qt are two such
toolkits (support for other toolkits should be possible). Support for
either of these must be specified to the setup script when compiling
Maverik. See README-GTK and README-QT for more information. There are
examples of using GTK+ and Qt in the examples/misc/GTK and
examples/misc/Qt directories (only compiled if the relevant support is
enabled).

Maverik has also been used with xforms. Here the Maverik rendering
area and the GUI are separate windows - rather than Maverik being a
sub-window forming part of a larger GUI window. There is an example of
using xforms in the examples/misc/xforms directory (not compiled by
default because it need the xform path specifying).

---------------------------------------------------------------

Q11: Why is there no collision detection?

At first it may appear strange that the standard Maverik navigation
does not perform collision detection. What you should remember is that
Maverik is a toolkit - it provides you with the functionality to
easily detect if a collision has occurred, but does not dictate what
happens as a result, that bit is upto you.

Its straightforward to implement navigation which performs collision
detection to stop the users movement (an example of this is
implemented in the programmers guide). The advantage of Maverik being
a C toolkit is that it allows you to apply any additional constraints
you wish. For example, collision with an object would only stop the
user if:

(1) its volume was greater than some threshold.
(2) its of a certain shape or colour.
(3) its after 5pm on alternate Thursday’s.

---------------------------------------------------------------

Q12: Can read in objects defined in <Insert File Format Here>?

Maybe... There are a great number of modelers and file formats out
there, but its not our job to support all of these. In fact, we
support just three - VRML97 [http://www.vrml.org], Lightwave and AC3D
[http://www.ac3d.org].

The VMRL97 parser uses the free CyberVRML97 for C++ library by Satoshi
Konno (http://www.cyber.koganei.tokyo.jp/top/index.html). VRML97
support is *not* enabled by default - you must specify its use when
installing Maverik. See INSTALL file for more details. Only the
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geometry of VRML97 files is read, no attempt is made to parse scripts,
URL’s, viewpoints etc... Furthermore, not all of the numerous ways in
which the geometry can be defined are supported, e.g. concave
polygons, colour-per-vertex.

AC3D is geometry modeler which, as well as creating and editing
objects, can import them from a number of common 3D file formats
(including 3DS, DXF, Lightwave and VRML1). Other packages, such as
Crossroads and 3DC [there are links to these from the AC3D page], can
translate between many different 3D file formats and the AC3D
format. Thus, supporting AC3D provides a means of easily
creating/editing objects and also indirect support for many common 3D
file formats. Here’s the rub - a fully working version of AC3D cost
$40 US.

Of course, there is nothing stopping you writting your own support for
your favorite file format.

---------------------------------------------------------------

Q13: My objects appear to be clipped to planes that don’t coincide
with the view frustum - I’m getting objects disappearing when
they get near the edge of the window.

Your view direction or view up vectors probably aren’t normalised.

---------------------------------------------------------------

Q14: Where is Spot The Dog?

Usually under the table. Have a good look.

---------------------------------------------------------------

Q15: Is Maverik thread-safe?

Yes and no. The Maverik kernel is not currently re-entrant. It does
not attempt to protect its own data structures from being damaged by
multiple threads attempting to access them at once. So in this sense,
it’s not theadable.

However, on GNU/Linux the system could be compiled using the _REENTRANT
libraries and header files, so if you put your own protection around
the Maverik calls, it would be safe to use them in threaded programs.

---------------------------------------------------------------

Q16: What about multi-distributed users?

Maverik was designed to provides the management of all the graphics
and peripheral driving capabilities *for a single user* in a flexible,
customizable and efficient manner.
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A complementary system under development, Deva, provides a networked
multi-user environment on top of Maverik, with the ability to specify
multiple active environments, laws etc.

---------------------------------------------------------------

Q17: Why are there ’get’ functions, but no complimentary ’set’ functions?
For example, there is a mav_callbackGetMatrixExec but no equivalent
mav_callbackSetMatrixExec?

Maverik doesn’t hold it’s own copies of data structures, so once
you’ve ’got’ a structure, that really is it. You can do whatever you
like with that structure, and Maverik will just use that. There’s no
need to ’put it back’ into Maverik.

---------------------------------------------------------------

Q18: I sometimes see a colour banding effect on objects - I get a
saw-tooth pattern around the edges of objects?

These effects are probably due to limited depth buffer resolution and
are particularly noticeable when using, but not limited to, Voodoo
based cards and Mesa.

There are a limited number of bits comprises the depth buffer with the
result that the depth values calculated for two objects whose distance
from the eye is large but similar (or indeed the front and back faces
of the same object if backface culling has not been enabled) can get
quantized to the same value. The result of this is the object or faces
may not be correctly depth buffered leading to one "poking through"
the other. This "poking through" pattern moves around with the eye
point as the depth values of the object/faces get quantized
differently.

There are two ways in which you can reduce this effect:

1) Enable backface culling.
2) Reduce the depth range of your model thus allowing it to be more
accurately represented with the limited number of bits available. This
is achieved through the near and far clip distance set with the
function mav_windowPersepectiveSet. It is more beneficial to increase
the near clip plane distance that to reduce the far clip plane.

The near and far clip distances can be dynamically modified at run
time by pressing Ctrl-F5 to Ctrl-F8 (press Shift-F12 for more
information).

---------------------------------------------------------------

Q19: How are MAV_matrix’s implemented/ordered?

Easy answer: its unimportant *provided* that you manipulate matrices
via the functions Maverik provides and that you use the results of
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these operations as graphical transformations.

Complex answer:

OpenGL, Maverik and most graphics textbooks use a convention of
postmultiplying by column vectors, i.e. v’ = M.v

Maverik stores the matrix, M, as a 4x4 array of floats. Maverik
follows the standard C convention and uses row-majored access to a 2
dimensional array, i.e. M[i][j] refers to row i column j. Thus, the X
translation term of a matrix, the top-right element, is accessed as
as M[0][3].

However, OpenGL expects to receive matrices as column-majored, and
therefore a 2 dimensional matrix implemented in C needs to be
transposed before being passed to OpenGL (see OpenGL programmers
guide). Maverik automatically performs this transpose.

---------------------------------------------------------------

Q20: Are applications written for Maverik version 4.x compatible with
version 5.x?

Possibly. Version 5 handles matrices in the manner described above,
i.e. row majored whereas version 4 used column majored. If you set
matrices via the functions Maverik provides, rather than accessing
individual elements, then this internal change should not prevent
back compatibility. If you do access individual elements, then you
will need to transpose the element indices to make a version 4
application work with version 5, i.e. m.mat[2][1] becomes
m.mat[1][2].

Also, version 5 fixed a bug in which roll and yaw angles were left
rather than right handed. So while the code will still compile and
execute, objects may no longer be oriented as before. Replacing
mav_matrixSet with mav_matrixSetOld will fix this, but it is
recommended that you correct the angles supplied to the
mav_matrixSet and mav_matrixRPYSet functions.

In version 4 the avatar’s hands were specified relative to his body,
version 5 requires them in World coordinates.

---------------------------------------------------------------

Q21: How do I recompile modified Maverik soure code, examples, or demos?

The top level Makefile in the Maverik distribution defines various
environment variables before traversing the sub-directories
performing a "make" in each. The Makefiles in the sub-directories rely
on these environment variables and so will not operate correctly if
they are directly executed.

So, if you modify the Maverik source code or examples then to
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recompile them you must either:

(1) type "make" in the top level directory of the Maverik
distribution, or

(2) Manually set the environment variables and type "make" in the
sub-directory containing the modifications.

We suggest the first. Traversing the sub-directories where no changes
have been made is a fairly quick process.

The examples rely only on two environment variables, MAV_HOME and CC,
to indicate where Maverik is installed and what complier options to
use (this is documented in the MPG). The demos additionally rely on
the OPENGLINCL and OPENGLLIBS environment variables to indicate how to
include the OpenGL header files and how to link with the
libraries. The Makefiles for the Maverik source code rely on many more
environment variables and setting these by hand in not recommended.

---------------------------------------------------------------

Q22: Why are some of the later chapters in the MPG missing?

Maverik is a large system and fully documenting it will take some
time. So far we have concentrated our efforts on the MPG and in
particular what a beginner to the system needs to know. Advanced
usage, such as adding support for new input devices or creating
your own types of SMS, has yet to be documented - its coming though.

---------------------------------------------------------------

Q23: Why are some of the functional specifications poorly documented
or blank?

See above. We have place holders for all of the functions and types in
the MFS, but simply haven’t had the time to fully document, and
importantly, cross-link them all. As with the MPG, we have
concentrated on documenting the most common functions. The others are
being steadily added.

---------------------------------------------------------------

Q24: Why do the man pages look horrible on SGI’s?

Dunno. If I had to guess I’d say something like they use a different
version of groff than pod2man, which created the man pages, was
expecting. Live with it or use the HTML versions until this problem is
fixed.

---------------------------------------------------------------

Q25: I get an "ld: cannot open -lGL: No such file or directory" error
when compiling Maverik
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Maverik 5.2 and before linked with -lMesaGL under Linux and
FreeBSD. Version 5.3 and later link with -lGL. This change coincides
with Mesa changing the name of the library it generates (libMesaGL.so
before version 3.1, simply libGL.so after). So, if Maverik can not
find libGL.so upgrade to version 3.1 of Mesa or soft link libGL.so to
be libMesaGL.so

---------------------------------------------------------------

Q26: Why does mav_matrixRPYGet give the wrong results?

A. It doesn’t, it give the correct answer - probably just not the one
you want :)

The conversion from an orientation matrix to a set of roll, pitch and
yaw values is inherently ill-defined. That is to say there are
multiple sets of RPY values which describe a given orientation - there
is no one-to-one mapping. For example, a RPY of (0, 0, 145) is
mathematically identical to one of (180, 180, 35) in that they both
give the same orientation.

mav_matrixRPYGet returns just one of the many possible RPY values
which can describe a given orientation. This may or may not be the
most "intuitive" set.

If you use all three RPY values together there should not be a
problem. What you cant do is modify one of the values in isolation and
expect to get sensible behaviour.

---------------------------------------------------------------

Q27: Why are the numbers returned by mav_fps and mav_fps_avg incorrect?

A: mav_fps is based on the elapsed wall-clock time between the start
of mav_frameBegin and end of mav_frameEnd. (mav_fps_avg is simply
mav_fps averaged over a number of frames).

However, since an OpenGL implementation can buffer commands in several
different locations - including network buffers and the graphics
accelerator itself - the time recorded by mav_fps may not accurately
reflect the time it would take for the commands to complete.

In order to get an accurate time mav_frameEnd must wait until the
effects of all previously called OpenGL commands are completed. This
can be achieved by setting mav_opt_finish to MAV_TRUE.

Also, this buffering effect needs to be taken into account if you are
timing a sequence of graphics commands, for example in order to abort
rendering after a given elapsed time. The mav_gfxFinish command can be
called to flush the command buffers and wait until their effects have
been realised.

---------------------------------------------------------------
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Q28: What are the issues when dealing with semi-transparent objects?

A: In order to correctly deal with semi-transparent objects the
application must set the mav_opt_trans variable to MAV_TRUE before
initialising Maverik.

With this enabled a check is made before each object is rendered to
determine if it is semi-transparent. If it is not, the object is
rendered immediately; if it is semi-transparent then the object is not
rendered but stored in a list for processing later.

At the end of the frame, after all opaque objects have been rendered,
the list of semi-transparent objects is traversed. These objects are
rendered in back-to-front order - that is the furthest object from
the eye point is rendered first, the closest to the eye point last.

In order for Maverik to determine if an object is semi-transparent it
executes the getSurfaceParams callback on it. Similarly, the BB
callback is executed to obtain the object’s bounding box (and hence
position) in order to perform the depth sorting. A user-defined class
of object would need to provide both of these callbacks if the object
is to be correctly treated when semi-transparent.

Note that semi-transparent objects which overlap in space may not
appear correctly since the depth sorting effectively treats each
object as a point.

Backface culling should be enabled when using semi-transparent objects
to avoid the "far-side" of the object being visible.

---------------------------------------------------------------

Q29: Are applications written for Maverik version 5.x compatible with
version 6.x?

A: No, but the changes you need to make to a 5.x application in order
for it to work with Maverik 6.x are quite small and mechanical:

1. Initialisation - mav_initialise in 5.x has been renamed to be
mav_initialiseNoArgs in 6.x and mav_initialiseArgs in 5.x has been
renamed to mav_initialise in 6.x.

2. Frame functions - The prototype of MAV_frameFn changed in 6.x to
allow arbitrary data to be passed to the function. The easiest way to
upgrade any such functions from 5.x to 6.x is to make them take an
ignored void * parameter and to call the mav_frameNAdd/Rmv functions
with a NULL argument. So,

void fn(void)
mav_frameFn0Add(fn);

in 5.x becomes:
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void fn(void *ignored)
mav_frameFn0Add(fn, NULL);

in 6.x.

3. TDM - TDM libraries are now specified at run time and dynamically
loaded rather than being statically linked into Maverik. See
examples/misc/TDM/tdm.c for an example of how the library is
specified.
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3Dfx, see graphics card
4Dwm, 64

Abstracted graphics layer, 79
AC3D, 33
alpha colour values, 57
annotation text, 40
application-specific data, 52
authors, 7

backface culling, 64
background colour, 64
bounding box, 81, 99
box (default object class), 137
buffer swapping, 21
bug reporting, 7

callback functions, 11
circular torus (default object class), 145
class

concept of, 11
clip planes, 104
collision detection

complex, 97
simple, 94

colour table, 55
command line arguments, 173
composite object (default object class), 154
cone (default object class), 140
configuration file, 171
coordinate system, 32
cross-hairs, 128, 163
cylinder (default object class), 139

default methods, 11
Deva, 3, 9
DirectX, 4, 79
double-buffering, 21

ellipse (default object class), 143

environment variables, 127, 172
Euler angles, 80
events, 35–46

callbacks, 37
examples of MAVERIK applications, 6
example programs

eg1.c (minimal program), 21
eg2.c (defining an object), 22
eg3.c (rendering and navigation), 26
eg4.c (several objects), 29
eg5.c (interaction), 35
eg6.c (the rendering loop), 38
eg7.c (process-based callbacks), 40
eg8.c (view parameters), 48
eg9.c (creating a new class), 70
eg10.c (defining a draw method), 74
eg11.c (bounding box method), 81
eg12.c (intersection method), 84
eg13.c (more object callbacks), 87
eg14.c (redefining object callbacks), 89
eg15.c (using drawing information), 90
eg16.c (simple collision detection), 94
eg17.c (complex collision detection), 97
eg18.c (collision detection revisited), 105
eg19.c (new object callbacks), 110
eg20.c (object callbacks extended), 112
fonts.c (fonts), 59
lod.c (level of detail), 33
mipmap.c (mipmapping), 58
position.c (positioning lights), 60
stereo.c (stereo), 63
textures.c (textures), 57
trans.c (transparent objects), 160
wins.c (multiple windows), 64

eyepoint, 47

facet (default object class), 149
FAQ, 3, 175–186
fixed up vector, 47
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font table, 55
fonts, 59
frame, 20

phases of displaying, 40
frame function, 38
frame-rate, 21, 163
FreeBSD, 4
function keys, 128

global variables, 21
GNU, 3
GNU/Linux, 4
graphics

options variables, 160
graphics card

3Dfx, 129

half ellipse (default object class), 144
half sphere (default object class), 142

ImageMagick, 58
immediate mode rendering, 10
initialisation, 21, 171

command line arguments, 173
configuration file, 171
environment variables, 172

INSTALL file, 129
IrisGL, 4, 79
Irix, 4

kernel
options variables, 157

keyboard events, 37
non-ASCII symbols, 38

LD LIBRARY PATH environment variable, 127
level of detail, 33, 161
levels, 6
lights, 60

defaults, 60
defining, 60
lighting model, 60
positioning, 60

Lightwave, 33
Linux, 4
list management functions, 102

MacOS, 4

mailing lists, 7
main loop, 40
Makefile, 127
materials table, 55
MAV HOME environment variable, 127
MAVERIK Functional Specification (MFS), 3,

6
maverik.h file, 21
maverik.ini configuration file, 171
.maverikrc configuration file, 171
Mesa, 4
micro-kernel, 4, 9
mouse

3D world position, 46
drawing as cross-hairs, 128, 163
middle button, 35
status variables, 163

multi-channel output, 62

navigation, 26–29, 49–53
changing at run-time, 129
customising, 93–99
Doom-style, 52
navigator function, 50

object
box (default class), 137
circular torus (default class), 145
composite (default object class), 154
concept of, 11
cone (default class), 140
cylinder (default class), 139
default classes, 23, 135–155
defining, 22
defining new callbacks, 109–112
defining new classes, 69–92
ellipse (default class), 143
facet (default class), 149
half ellipse (default class), 144
half sphere (default class), 142
intersection with vector, 84
obtaining class of, 44
obtaining data of, 38
options variables, 161
polygon (default class), 147
polygon group (default class), 148
polyline (default class), 152
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pyramid (default class), 138
rectangle (default class), 150
rectangular torus (default class), 146
registering, 12
rendering, 22
setting selectability of, 43
sms (default object class), 155
sphere (default class), 141
surface parameters, see surface parameters
teapot (default class), 151
text (default class), 153
transparent, 160, 165

OpenGL, 4, 23, 55, 74, 79
orthogonal view, 62

palette, see window
perspective view, 61

changing at run-time, 129
platforms, 4
polygon (default object class), 147
polygon group (default object class), 148
polyline (default object class), 152
process-based callbacks, 40
pyramid (default object class), 138

quad-buffers, 63
quaternions, 80

random numbers, 33
rectangle (default object class), 150
rectangular torus (default object class), 146
RedHat, 4
rendering, 55

toggle wireframe/filled at run-time, 92, 128

shutter glasses, 63
sms object (default object class), 155
Spatial Management Structure (SMS), 13–14

adding an object to an SMS, 25
creating an HBB from another SMS, 116
customising, 125
displaying, 25
hierarchical bounding box (HBB), 25, 115
implementation details, 101–107
multiple, 44
object List, 25
removing an object from an SMS, 25, 43
setting selectability of, 43

sphere (default object class), 141
stereo, 62, 118

changing parameters at run-time, 128
options variables, 160

supported platforms, 4
supporting modules, 4
surface parameters, 24, 26–29, 55
SuSE, 4

teapot (default object class), 151
advice on brewing, 151

text (default object class), 153
textures

file formats, 31
loading from memory, 58
mipmapping, 58
recognised file formats, 58
texture environment, 59
texture table, 55
transparent, 59

transparent objects, 57, 160, 165

user-defined data, 52, 135

variables
class and callback, 165
information, 162
options, 157

view direction vector, 47
view modifier function, 47, 116
view parameters, 47
view up vector, 47
viewing, 47–53

default values, 25
defining the view, 47
per-view modifier function, 117
per-window modifier function, 118
printing parameters at run-time, 128

Voodoo, see graphics card
VRML97, 33

window
backface culling, 64
background colour, 64
borders, 64
decorations, 64
deleting, 65
making run-time screendump, 128
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opening, 64
options variables, 158
orthogonal view, 62
palette, 27, 55

matching indices, 61
unused indices, 61
warnings, 158

perspective view, 61
changing at run-time, 129

view modifier function, 118
Windows (the operating system), 4
world up vector, 47

X11
MaverikApp resource class, 64
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glBegin, 79
glEnd, 79
glMultMatrixf, 79
glNormal3f, 79
glPopMatrix, 79
glPushMatrix, 79
glTexCoord2f, 89
glVertex3f, 79

mav BBAlign, 82
mav BBCompInit, 82
mav BBCompPt, 82
mav BBDisplay, 83

mav callbackBBExec, 83
mav callbackBBSet, 83
mav callbackDrawSet, 72
mav callbackExec, 111
mav callbackGetSurfaceParamsExec, 44
mav callbackIntersectExec, 86
mav callbackIntersectSet, 86
mav callbackKeyboardSet, 37
mav callbackMouseSet, 37
mav callbackNew, 110
mav callbackQuery, 83
mav callbackSet, 110
mav classNew, 70
mav clipPlanesGet, 105

mav drawInfoTransFrame, 91

mav eventsCheck, 21, 28
mav eyeLeft, 119
mav eyeRight, 119

mav frameBegin, 21
mav frameEnd, 21
mav frameFn1, 45, 46
mav frameFn1Add, 40
mav frameFn1Rmv, 40

mav free, 87

mav gfxMatrixMult, 79
mav gfxMatrixPop, 79
mav gfxMatrixPush, 79
mav gfxNormal, 79
mav gfxPolygonBegin, 79
mav gfxPolygonEnd, 79
mav gfxTexCoord, 89
mav gfxVertex, 79

mav HBBConstructFromSMS, 116

mav initialise, 21, 55, 63
mav initialiseNoArgs, 21

mav linePolygonIntersection, 87
mav lineTransFrame, 86, 91
mav listNew, 102

mav malloc, 87
mav matrixScaleGet, 87
mav matrixSet, 32

mav navigateForwards, 51, 94
mav navigateForwardsFixedUp, 51
mav navigateNull, 50
mav navigatePitch, 51
mav navigatePitchFixedUp, 51
mav navigateRight, 51
mav navigateRightFixedUp, 51
mav navigateRoll, 51
mav navigateRotFixedUp, 51
mav navigateRotRight, 51
mav navigateRotUp, 51
mav navigateTransX, 50, 93
mav navigateTransY, 50, 94
mav navigateTransZ, 50, 94
mav navigateUp, 51
mav navigateUpFixedUp, 51
mav navigateYaw, 51, 94
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mav navigateYawFixedUp, 51
mav navigationKeyboard, 52
mav navigationKeyboardDefaultParams, 52
mav navigationMouse, 28, 49
mav navigationMouseDefaultParams, 49, 93

mav objectClassGet, 44
mav objectDataGet, 38
mav objectDataWith, 84
mav objectDelete, 43, 102
mav objectIntersectionsSort, 86
mav objectNew, 24, 71

mav paletteColourIndexEmptyGet, 61
mav paletteColourIndexMatchGet, 61
mav paletteColourSet, 57
mav paletteFontSet, 59
mav paletteLightingModelSet, 60
mav paletteLightPos, 60
mav paletteLightPositioning, 60
mav paletteLightSet, 60
mav paletteMaterialSet, 57
mav paletteNew, 56
mav paletteTextureAlphaSet, 58
mav paletteTextureColourAlphaSet, 59
mav paletteTextureEnvPaletteSet, 59
mav paletteTextureEnvSet, 59
mav paletteTextureMipmappingSet, 58
mav paletteTextureSet, 58
mav paletteTextureSetFromMem, 58

mav random, 33

mav SMSCallbackExecFnExec, 104
mav SMSCallbackObjectAddExec, 101
mav SMSCallbackObjectNextExec, 102
mav SMSCallbackObjectRmvExec, 102
mav SMSCallbackPointerPopExec, 103
mav SMSCallbackPointerPushExec, 103
mav SMSCallbackPointerResetExec, 102
mav SMSDelete, 99
mav SMSDisplay, 25
mav SMSDisplayFn, 105
mav SMSHBBNew, 116
mav SMSIntersectBBAll, 44, 99
mav SMSIntersectLineAll, 44
mav SMSObjectAdd, 25, 102
mav SMSObjectRmv, 25, 102

mav SMSObjListNew, 25
mav stringDisplay, 40
mav surfaceParamsNew, 27, 57
mav surfaceParamsUndefine, 81
mav surfaceParamsUse, 81

mav vectorRotate, 94
mav vectorScrnPos, 113
MAV viewModifierParams, 119

mav windowBackfaceCullSet, 64
mav windowBackgroundColourSet, 64
mav windowDelete, 65
mav windowNew, 64
mav windowOrthogonalSet, 62
mav windowPaletteSet, 56
mav windowPerspectiveSet, 61
mav windowPolygonModeSet, 92
mav windowViewModifierSet, 119
mav windowViewParamsSet, 48
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[This index lists the MAVERIK functions (and a few OpenGL functions) mentioned in this manual.
For the full list of all MAVERIK functions, please refer to the MAVERIK Functional Specification.]
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MAV BB, 81
MAV BB ACCURATE, 161
MAV BB FAST, 161
MAV BLENDED TEXTURE, 57
MAV box, 23

MAV callback, 110
MAV callbackBBFn, 81
MAV callbackDeleteFn, 87
MAV callbackDrawFn, 71
MAV callbackDumpFn, 88
MAV callbackFn, 83, 110
MAV callbackGetMatrixFn, 88
MAV callbackGetSurfaceParamsFn, 88
MAV callbackGetUserdefFn, 88
MAV callbackIDFn, 87
MAV callbackIntersectFn, 84
mav class any, 37
mav class miss, 37
mav class world, 37, 43
MAV clipPlanes, 90
MAV COLOUR, 56

MAV drawInfo, 72, 90, 91, 104
mav drawingMouse, 163

mav firstFrame, 163
mav fps, 21, 163
mav fps avg, 22, 163
mav frameCount, 163

mav gfx renderer, 164
mav gfx vendor, 164
mav gfx version, 164

MAV ID MATRIX, 24, 165
MAV ID QUATERNION, 165

MAV keyboardEvent, 38

MAV line, 84

MAV LIT TEXTURE, 56

MAV MATERIAL, 56
MAV matrix, 24, 74, 80
mav module list, 164
mav mouse button, 164
mav mouse dir, 46, 164
mav mouse pos, 164
mav mouse root x, 163
mav mouse root y, 163
mav mouse x, 163
mav mouse y, 163

mav nav center, 162
mav navigating, 163
MAV navigatorFn, 93
mav needFrameDraw, 163
MAV NULL VECTOR, 165

mav object list, 165
MAV objectIntersection, 46
mav opt accumBuf, 159
mav opt BBMethod, 161
mav opt bindTextures, 161
mav opt compositeSetMatrix, 161
mav opt curveFactor, 33, 162
mav opt curveLOD, 33, 161
mav opt defaultInit, 158
mav opt delayTexture, 160
mav opt destAlpha, 159
mav opt disp, 159
mav opt drawNormals, 162
mav opt finish, 159
mav opt fixedRnd, 158
mav opt flush, 159
mav opt fullscreen, 158
mav opt height, 21, 158
mav opt maxColours, 56, 158
mav opt maxFonts, 56, 158
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mav opt maxLights, 56, 158
mav opt maxMaterials, 56, 158
mav opt maxTextures, 56, 158
mav opt mipmapping, 58, 161
mav opt multiSample, 159
mav opt name, 159
mav opt navPassEvents, 162
mav opt noWins, 158
mav opt objectTables, 157
mav opt output, 157
mav opt paletteWarn, 158
mav opt quadBuf, 159
mav opt restrictMouse, 159
mav opt right disp, 160
mav opt right height, 160
mav opt right name, 160
mav opt right width, 160
mav opt right x, 160
mav opt right y, 160
mav opt shareContexts, 159
mav opt singleBuf, 159
mav opt stencilBuf, 159
mav opt stereo, 63, 160
mav opt syncSwap, 160
mav opt TDMLib, 162
mav opt texComps, 161
mav opt trackMatrix, 161
mav opt trans, 57, 160
mav opt vertsMax, 33, 162
mav opt vertsMin, 33, 162
mav opt VRML97CleanUp, 162
mav opt VRML97HBBThreshold, 162
mav opt width, 21, 158
mav opt WMPlacement, 159
mav opt x, 21, 158
mav opt y, 21, 158

mav palette default, 31, 55, 165
mav palette list, 165
MAV polygon, 87
MAV PROJANDVIEW, 161

MAV SMS, 25, 116
mav SMS displayFn, 105
mav sms list, 165
MAV SMSExecFn, 104
mav sp current, 165

mav sp default, 24, 165
MAV sphere, 91
MAV STEREO QUAD BUFFERS, 63, 159, 160
MAV STEREO QUAD BUFFERS SEPARATE Z,

63, 159, 160
MAV STEREO TWO WINS, 63, 160
mav stp default, 63
MAV surfaceParams, 24, 56, 74, 135

MAV texCoord, 89
MAV TEXTURE, 56
MAV THIS VERSION, 164
mav this version, 164
mav transObjList, 165

MAV vector, 23
MAV VERSION, 164
MAV viewParams, 47
mav vp default, 48

mav win all, 37, 163
mav win current, 163
mav win left, 163
mav win list, 163
mav win mono, 163
mav win mouse, 163
mav win right, 163
MAV window, 48

MAV X VECTOR, 165
mav xres, 164

MAV Y VECTOR, 165
mav yres, 164

MAV Z VECTOR, 165
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[This index lists the MAVERIK types, variables and constants mentioned in this manual. For the
full list, please refer to the MAVERIK Functional Specification. We use the following typographical
conventions: types begin MAV and are then in mixed case (example: MAV viewParams); variables
begin mav and are then in mixed case (example: mav frameCount); and constants are all in uppercase
(example: MAV ID MATRIX).]
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