BIND 9 Administrator Reference
Manual

BIND 9.9.9-P1 (Extended Support Version)

=

Copyright (C) 2004-2015 Internet Systems Consortium, Inc. ("ISC")
Copyright (C) 2000-2003 Internet Software Consortium.

Permission to use, copy, modify, and/or distribute this software for any purpose with or with-
out fee is hereby granted, provided that the above copyright notice and this permission notice
appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, IN-
DIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Internet Systems Consortium
950 Charter Street
Redwood City, California
USA
https:/ /www.isc.org/

Contents

1 Introduction 1
1.1 Scopeof Document 1

1.2 Organization of This Document 1

1.3 Conventions Used in This Document 1

14 The Domain Name System (DNS). 2
DNS Fundamentals e 2
Domains and Domain Names 2

ZONES .« o o o v vt e e e e e e e e e 3
Authoritative Name Servers L 3
Caching Name Servers 4

Name Serversin MultipleRoles, 5

2 BIND Resource Requirements 7
21 Hardwarerequirements 7
22 CPURequirements 7

2.3 Memory Requirements L oL o 7
24 Name Server Intensive EnvironmentIssues 7
2.5 Supported Operating Systems o L 8

3 Name Server Configuration 9
3.1 Sample Configurations 9

A Caching-only Name Server 9

An Authoritative-only Name Server 9

32 LoadBalancing 10

3.3 NameServer Operations 11
Tools for Use With the Name Server Daemon 11

Signals 13

iii BIND 9.9.9-P1

CONTENTS CONTENTS
4 Advanced DNS Features 15
41 Notifyo 15
42 DynamicUpdate 15
Thejournalfile 16
4.3 Incremental Zone Transfers (IXFR) 16
44 SpLitDNS. e 17
Examplesplit DNSsetup 17
45 TSIG . .. 20
GeneratingaSharedKey L. 21
Loading ANew Key 21
Instructing the ServertoUseaKey 22
TSIG-Based Access Control 22
Errors e 22
46 TKEY 23
47 SIG(0) e 23
48 DNSSEC 24
GeneratingKeys L L 24
Signingthe Zone 24
Configuring Servers. 25
49 DNSSEC, Dynamic Zones, and Automatic Signing 27
Converting from insecuretosecure L. 27
Dynamic DNS update method 28
Fully automatic zonesigning 29
Private-typerecords 29
DNSKEY rollovers 30
Dynamic DNS update method 30
Automatickeyrollovers L L L 30
NSEC3PARAM rollovers via UPDATE 31
Converting from NSECtoNSEC3 31
Converting from NSEC3toNSEC 31
Converting from secure toinsecure 31
Periodicre-signing 31
NSEC3and OPTOUT 31
BIND 9.9.9-P1 iv

CONTENTS CONTENTS

4.10 Dynamic Trust Anchor Management 32
Validating Resolver 32
AuthoritativeServer L L L 32

411 PKCS#11 (Cryptoki) support 33
Prerequisites 33
Building BIND 9 with PKCS#11 36
PKCS#11Tools o 37
Usingthe HSM 37
Specifying the engine on the command line 39
Running named with automatic zone re-signing 39

412 IPv6 Supportin BIND9 o 39
Address Lookups Using AAAARecords 40
Address to Name Lookups Using Nibble Format 40

5 The BIND 9 Lightweight Resolver 41
5.1 The Lightweight Resolver Library 41
52 RunningaResolver Daemon 41

6 BIND 9 Configuration Reference 43

6.1 ConfigurationFileElements 43
Address Match Lists 45
CommentSyntax 46

6.2 Configuration File Grammar. 48
acl Statement Grammar L L L 49
acl Statement Definitionand Usage 49
controls Statement Grammar L oL L 49
controls Statement Definitionand Usage 49
include Statement Grammar L L Lo 50
include Statement Definitionand Usage 51
key Statement Grammar Lo 51
key Statement Definitionand Usage 51
logging Statement Grammar Lo L 51
logging Statement Definitionand Usage 52
Iwres Statement Grammar L 60

v BIND 9.9.9-P1

CONTENTS CONTENTS
Iwres Statement Definitionand Usage 60
masters Statement Grammar Lo L L L oo 61
masters Statement Definitionand Usage 61
options Statement Grammar Lo L o L 61
options Statement Definitionand Usage 65
server Statement Grammar Lo 111
server Statement Definitionand Usage 111
statistics-channels Statement Grammar 113
statistics-channels Statement Definitionand Usage 113
trusted-keys Statement Grammar o o 0oL 114
trusted-keys Statement Definitionand Usage 114
managed-keys Statement Grammar L. L L. 114
managed-keys Statement Definitionand Usage 115
view Statement Grammar Lo Lo Lo 116
view Statement Definitionand Usage 116
zone Statement Grammar 117
zone Statement Definitionand Usage 121

6.3 ZoneFile 133
Types of Resource Records and Whento Use Them 133
Discussionof MX Records 140
Setting TTLs e 141
Inverse Mapping inIPv4 141
Other Zone File Directives 142
BIND Master File Extension: the $GENERATE Directive 143
Additional File Formats 145

6.4 BINDO9 Statistics oo 145
The Statistics File 146
StatisticsCounters. 146

7 BIND 9 Security Considerations 153

71 AccessControl Lists. 153

72 Chrootand Setuid L 154
The chroot Environment 154
Using the setuid Function 154

7.3 Dynamic Update Security 155

BIND 9.9.9-P1

Vi

CONTENTS CONTENTS
8 Troubleshooting 157
81 CommonProblems 157
It’s not working; how can I figure out what's wrong? 157
8.2 Incrementing and Changing the Serial Number 157
83 WhereCanlIGetHelp? 157
9 Manual pages 159
91 dig ... 159
92 host 166
93 dnssec-checkds 168
9.4 dnssec-COVerage 169
9.5 dnssec-dsfromkey L 171
9.6 dnssec-importkey 173
9.7 dnssec-keyfromlabel o o 174
9.8 dnssec-keygen 178
9.9 dnssec-revoke 183
9.10 dnssec-settime 184
9.11 dnssec-signzone 186
9.12 dnssec-verify 192
9.13 named-checkconf L 193
9.14 named-checkzone L 195
915 named 198
9.16 named.conf 201
917 Iwresd 214
9.18 named-journalprint L L L L L 216
919 nsupdate 217
920 rndc e 222
921 rndc.conf . .. 228
922 rndc-confgen 230
9.23 ddns-confgen 231
924 arpaname. 233
925 genrandom 233
9.26 isc-chmac-fixup 234
9.27 nsec3hash 235

vii BIND 9.9.9-P1

CONTENTS

CONTENTS

A Release Notes

B A Brief History of the DNS and BIND

C General DNS Reference Information

D BIND 9 DNS Library Support

237

239

241

247

BIND 9.9.9-P1

viii

1 Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities
in the Internet in a hierarchical manner, the rules used for delegating authority over names,
and the system implementation that actually maps names to Internet addresses. DNS data is
maintained in a group of distributed hierarchical databases.

1.1 SCOPE OF DOCUMENT

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number
of operating systems. This document provides basic information about the installation and
care of the Internet Systems Consortium (ISC) BIND version 9 software package for system
administrators.

This version of the manual corresponds to BIND version 9.9.

1.2 ORGANIZATION OF THIS DOCUMENT

In this document, Chapter 1 introduces the basic DNS and BIND concepts. Chapter 2 describes
resource requirements for running BIND in various environments. Information in Chapter 3 is
task-oriented in its presentation and is organized functionally, to aid in the process of installing
the BIND 9 software. The task-oriented section is followed by Chapter 4, which contains more
advanced concepts that the system administrator may need for implementing certain options.
Chapter 5 describes the BIND 9 lightweight resolver. The contents of Chapter 6 are organized as
in a reference manual to aid in the ongoing maintenance of the software. Chapter 7 addresses
security considerations, and Chapter § contains troubleshooting help. The main body of the
document is followed by several appendices which contain useful reference information, such as
a bibliography and historic information related to BIND and the Domain Name System.

1.3 CONVENTIONS USED IN THIS DOCUMENT

In this document, we use the following general typographic conventions:

1 BIND 9.9.9-P1

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

To describe: We use the style:
a pathname, filename, URL, hostname, mailing
list name, or new term or concept Fixed width

literal user input Fixed Width Bold

program output Fixed Width

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input

[Text is enclosed in square brackets]

1.4 THE DOMAIN NAME SYSTEM (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND (Berkeley
Internet Name Domain) software package, and we begin by reviewing the fundamentals of the
Domain Name System (DNS) as they relate to BIND.

DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It stores information
for mapping Internet host names to IP addresses and vice versa, mail routing information, and
other data used by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one
or more name servers and interprets the responses. The BIND 9 software distribution contains a
name server, named, and a resolver library, liblwres. The older libbind resolver library is also
available from ISC as a separate download.

Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according
to organizational or administrative boundaries. Each node of the tree, called a domain, is given
a label. The domain name of the node is the concatenation of all the labels on the path from the
node to the root node. This is represented in written form as a string of labels listed from right
to left and separated by dots. A label need only be unique within its parent domain.

BIND 9.9.9-P1 2

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

For example, a domain name for a host at the company Example, Inc. could be ourhost.
example.com, where com is the top level domain to which ourhost .example.combelongs,
example is a subdomain of com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas called zones, each starting
at a node and extending down to the leaf nodes or to nodes where other zones start. The data
for each zone is stored in a name server, which answers queries about the zone using the DNS
protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some
of the supported resource record types are described in Section 6.3.

For more detailed information about the design of the DNS and the DNS protocol, please refer
to the standards documents listed in Section C.2.

Zones

To properly operate a name server, it is important to understand the difference between a zone
and a domain.

As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those
contiguous parts of the domain tree for which a name server has complete information and
over which it has authority. It contains all domain names from a certain point downward in the
domain tree except those which are delegated to other zones. A delegation point is marked by
one or more NS records in the parent zone, which should be matched by equivalent NS records
at the root of the delegated zone.

For instance, consider the example.com domain which includes names such as host .aaa.
example.comand host .bbb.example.com even though the example.com zone includes
only delegations for the aaa.example.comand bbb.example.com zones. A zone can map
exactly to a single domain, but could also include only part of a domain, the rest of which could
be delegated to other name servers. Every name in the DNS tree is a domain, even if it is terminal,
that is, has no subdomains. Every subdomain is a domain and every domain except the root is
also a subdomain. The terminology is not intuitive and we suggest that you read RFCs 1033,
1034 and 1035 to gain a complete understanding of this difficult and subtle topic.

Though BIND is called a "domain name server", it deals primarily in terms of zones. The master
and slave declarations in the named. conf file specify zones, not domains. When you ask some
other site if it is willing to be a slave server for your domain, you are actually asking for slave
service for some collection of zones.

Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data
for the zone. To make the DNS tolerant of server and network failures, most zones have two or
more authoritative servers, on different networks.

Responses from authoritative servers have the "authoritative answer" (AA) bit set in the re-
sponse packets. This makes them easy to identify when debugging DNS configurations using
tools like dig (Section 3.3).

3 BIND 9.9.9-P1

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the
primary master server, or simply the primary. Typically it loads the zone contents from some
local file edited by humans or perhaps generated mechanically from some other local file which
is edited by humans. This file is called the zone file or master file.

In some cases, however, the master file may not be edited by humans at all, but may instead be
the result of dynamic update operations.

Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone
contents from another server using a replication process known as a zone transfer. Typically the
data are transferred directly from the primary master, but it is also possible to transfer it from
another slave. In other words, a slave server may itself act as a master to a subordinate slave
server.

Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These
NS records constitute a delegation of the zone from the parent. The authoritative servers are also
listed in the zone file itself, at the fop level or apex of the zone. You can list servers in the zone’s
top-level NS records that are not in the parent’s NS delegation, but you cannot list servers in
the parent’s delegation that are not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS
records. Stealth servers can be used for keeping a local copy of a zone to speed up access to the
zone’s records or to make sure that the zone is available even if all the "official" servers for the
zone are inaccessible.

A configuration where the primary master server itself is a stealth server is often referred to as
a "hidden primary" configuration. One use for this configuration is when the primary master is
behind a firewall and therefore unable to communicate directly with the outside world.

Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they
are not capable of performing the full DNS resolution process by themselves by talking directly
to the authoritative servers. Instead, they rely on a local name server to perform the resolution
on their behalf. Such a server is called a recursive name server; it performs recursive lookups for
local clients.

To improve performance, recursive servers cache the results of the lookups they perform. Since
the processes of recursion and caching are intimately connected, the terms recursive server and
caching server are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is
controlled by the Time To Live (TTL) field associated with each resource record.

BIND 9.9.9-P1 4

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself.
Instead, it can forward some or all of the queries that it cannot satisfy from its cache to another
caching name server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted
or an answer is found. Forwarders are typically used when you do not wish all the servers at
a given site to interact directly with the rest of the Internet servers. A typical scenario would
involve a number of internal DNS servers and an Internet firewall. Servers unable to pass
packets through the firewall would forward to the server that can do it, and that server would
query the Internet DNS servers on the internal server’s behalf.

Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other
zones, and as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service
are logically separate, it is often advantageous to run them on separate server machines. A
server that only provides authoritative name service (an authoritative-only server) can run with
recursion disabled, improving reliability and security. A server that is not authoritative for any
zones and only provides recursive service to local clients (a caching-only server) does not need
to be reachable from the Internet at large and can be placed inside a firewall.

5 BIND 9.9.9-P1

2 BIND Resource Requirements

2.1 HARDWARE REQUIREMENTS

DNS hardware requirements have traditionally been quite modest. For many installations,
servers that have been pensioned off from active duty have performed admirably as DNS
servers.

The DNSSEC features of BIND 9 may prove to be quite CPU intensive however, so organi-
zations that make heavy use of these features may wish to consider larger systems for these
applications. BIND 9 is fully multithreaded, allowing full utilization of multiprocessor systems
for installations that need it.

2.2 CPU REQUIREMENTS

CPU requirements for BIND 9 range from i486-class machines for serving of static zones with-
out caching, to enterprise-class machines if you intend to process many dynamic updates and
DNSSEC signed zones, serving many thousands of queries per second.

2.3 MEMORY REQUIREMENTS

The memory of the server has to be large enough to fit the cache and zones loaded off disk. The
max-cache-size option can be used to limit the amount of memory used by the cache, at the
expense of reducing cache hit rates and causing more DNS traffic. Additionally, if additional
section caching (Section 6.2) is enabled, the max-acache-size option can be used to limit the
amount of memory used by the mechanism. It is still good practice to have enough memory
to load all zone and cache data into memory --- unfortunately, the best way to determine this
for a given installation is to watch the name server in operation. After a few weeks the server
process should reach a relatively stable size where entries are expiring from the cache as fast as
they are being inserted.

2.4 NAME SERVER INTENSIVE ENVIRONMENT ISSUES

For name server intensive environments, there are two alternative configurations that may be
used. The first is where clients and any second-level internal name servers query a main name

7 BIND 9.9.9-P1

CHAPTER 2. BIND RESOURCE... 2.5. SUPPORTED OPERATING SYSTEMS

server, which has enough memory to build a large cache. This approach minimizes the band-
width used by external name lookups. The second alternative is to set up second-level internal
name servers to make queries independently. In this configuration, none of the individual ma-
chines needs to have as much memory or CPU power as in the first alternative, but this has the
disadvantage of making many more external queries, as none of the name servers share their
cached data.

2.5 SUPPORTED OPERATING SYSTEMS

ISC BIND 9 compiles and runs on a large number of Unix-like operating systems and on Mi-
crosoft Windows Server 2003 and 2008, and Windows XP and Vista. For an up-to-date list of
supported systems, see the README file in the top level directory of the BIND 9 source distri-
bution.

BIND 9.9.9-P1 8

3 Name Server Configuration

In this chapter we provide some suggested configurations along with guidelines for their use.
We suggest reasonable values for certain option settings.

3.1 SAMPLE CONFIGURATIONS

A Caching-only Name Server

The following sample configuration is appropriate for a caching-only name server for use by
clients internal to a corporation. All queries from outside clients are refused using the allow-
query option. Alternatively, the same effect could be achieved using suitable firewall rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {

// Working directory

directory "/etc/namedb";

allow—query { corpnets; };
}i
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;

}i

An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is the master server for "example.
com" and a slave for the subdomain "eng.example.com'.

options {
// Working directory
directory "/etc/namedb";
// Do not allow access to cache

9 BIND 9.9.9-P1

CHAPTER 3. NAME SERVER... 3.2. LOAD BALANCING

allow—query-cache { none; };

// This is the default

allow—query { any; };

// Do not provide recursive service
recursion no;

}i

// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;

file "localhost.rev";

notify noj;
}i
// We are the master server for example.com
zone "example.com" {

type master;

file "example.com.db";

// IP addresses of slave servers allowed to

// transfer example.com

allow—-transfer {

192.168.4.14;
192.168.5.53;

}i
i
// We are a slave server for eng.example.com
zone "eng.example.com" {

type slave;

file "eng.example.com.bk";

// IP address of eng.example.com master server

masters { 192.168.4.12; };

3.2 LoOAD BALANCING

A primitive form of load balancing can be achieved in the DNS by using multiple records (such
as multiple A records) for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and
10.0.0.3, a set of records such as the following means that clients will connect to each machine
one third of the time:

Name TTL CLASS TYPE Resource Record (RR) Data
WWW 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

BIND 9.9.9-P1 10

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

When a resolver queries for these records, BIND will rotate them and respond to the query with
the records in a different order. In the example above, clients will randomly receive records in
the order 1, 2, 3; 2, 3, 1; and 3, 1, 2. Most clients will use the first record returned and discard
the rest.

For more detail on ordering responses, check the rrset-order sub-statement in the options state-
ment, see RRset Ordering.

3.3 NAME SERVER OPERATIONS

Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative and monitoring tools
available to the system administrator for controlling and debugging the name server daemon.

Diagnostic Tools

The dig, host, and nslookup programs are all command line tools for manually querying name
servers. They differ in style and output format.

dig
The domain information groper (dig) is the most versatile and complete of these lookup
tools. It has two modes: simple interactive mode for a single query, and batch mode which
executes a query for each in a list of several query lines. All query options are accessible
from the command line.
dig[@server] domain|[query-type] [query-class][+query-option][-dig-option][Y%com
ment]
The usual simple use of dig will take the form
dig @server domain query-type query-class
For more information and a list of available commands and options, see the dig man page.
host
The host utility emphasizes simplicity and ease of use. By default, it converts between
host names and Internet addresses, but its functionality can be extended with the use of
options.
host [-aCdInrsTwv] [-c class] [-N ndots] [-t type] [W timeout] [-R retries][-m flag]
[-4] [-6] hostname [server]
For more information and a list of available commands and options, see the host man
page.
nslookup

nslookup has two modes: interactive and non-interactive. Interactive mode allows the
user to query name servers for information about various hosts and domains or to print
a list of hosts in a domain. Non-interactive mode is used to print just the name and re-
quested information for a host or domain.

nslookup [-option...] [host—to-find | - [server]]

11 BIND 9.9.9-P1

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

Interactive mode is entered when no arguments are given (the default name server will
be used) or when the first argument is a hyphen (*-’) and the second argument is the host
name or Internet address of a name server.

Non-interactive mode is used when the name or Internet address of the host to be looked
up is given as the first argument. The optional second argument specifies the host name
or address of a name server.

Due to its arcane user interface and frequently inconsistent behavior, we do not recom-
mend the use of nslookup. Use dig instead.

Administrative Tools
Administrative tools play an integral part in the management of a server.

named-checkconf
The named-checkconf program checks the syntax of a named. conf file.

named-checkconf [§vz] [-t directory] [filename]

named-checkzone
The named-checkzone program checks a master file for syntax and consistency.

named—-checkzone [-dquD] [-c class] [-0 output] [-t directory] [-wW directory] [-k
(ignore/warn/fail)] [-n (ignore/warn/fail)] [-W (ignore/warn)] zone [filename]

named-compilezone
Similar to named-checkzone, but it always dumps the zone content to a specified file
(typically in a different format).

rndc
The remote name daemon control (rndc) program allows the system administrator to con-
trol the operation of a name server. Since BIND 9.2, rndc supports all the commands of
the BIND 8 ndc utility except ndc start and ndc restart, which were also not supported in
ndc’s channel mode. If you run rndc without any options it will display a usage message
as follows:

rndc [-c config] [-S server] [—p port] [-y key]| command [command...]
See rndc(8) for details of the available rndc commands.

rndc requires a configuration file, since all communication with the server is authenticated
with digital signatures that rely on a shared secret, and there is no way to provide that
secret other than with a configuration file. The default location for the rmdc configuration
fileis /etc/rndc. conf, but an alternate location can be specified with the —c option. If
the configuration file is not found, rndc will also look in /etc/rndc.key (or whatever
sysconfdir was defined when the BIND build was configured). The rndc.key file is
generated by running rndc-confgen -a as described in Section 6.2.

The format of the configuration file is similar to that of named. conf, but limited to only
four statements, the options, key, server and include statements. These statements are
what associate the secret keys to the servers with which they are meant to be shared. The
order of statements is not significant.

The options statement has three clauses: default-server, default-key, and default-port.
default-server takes a host name or address argument and represents the server that will

BIND 9.9.9-P1 12

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

be contacted if no —-s option is provided on the command line. default-key takes the
name of a key as its argument, as defined by a key statement. default-port specifies the
port to which rndc should connect if no port is given on the command line or in a server
statement.

The key statement defines a key to be used by rndc when authenticating with named. Its
syntax is identical to the key statement in named. conf. The keyword key is followed by
a key name, which must be a valid domain name, though it need not actually be hierar-
chical; thus, a string like "rndc_key" is a valid name. The key statement has two clauses:
algorithm and secret. While the configuration parser will accept any string as the argu-
ment to algorithm, currently only the string "hmac-md5" has any meaning. The secret is
a base-64 encoded string as specified in RFC 3548.

The server statement associates a key defined using the key statement with a server. The
keyword server is followed by a host name or address. The server statement has two
clauses: key and port. The key clause specifies the name of the key to be used when
communicating with this server, and the port clause can be used to specify the port rndc
should connect to on the server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-md5";
secret
"c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4AgYnVOIG1lhZGUgZmIyIGEgd29tYW4K <+

".
’

bi
options {
default-server 127.0.0.1;
default-key rndc_key;
}i

This file, if installed as /etc/rndc.conf, would allow the command:

$ rndc reload

to connect to 127.0.0.1 port 953 and cause the name server to reload, if a name server on
the local machine were running with following controls statements:

controls {
inet 127.0.0.1
allow { localhost; } keys { rndc_key; };
}i

and it had an identical key statement for rndc_key.

Running the rndc-confgen program will conveniently create a rndc. conf file for you,
and also display the corresponding controls statement that you need to add to named.
conf. Alternatively, you can run rndc-confgen -a to set up a rndc.key file and not
modify named. conf at all.

Signals

Certain UNIX signals cause the name server to take specific actions, as described in the follow-
ing table. These signals can be sent using the kill command.

13 BIND 9.9.9-P1

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

SIGHUP Causes the server to read named. conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

BIND 9.9.9-P1 14

4 Advanced DNS Features

4.1 NOTIFY

DNS NOTIFY is a mechanism that allows master servers to notify their slave servers of changes
to a zone’s data. In response to a NOTIFY from a master server, the slave will check to see that
its version of the zone is the current version and, if not, initiate a zone transfer.

For more information about DNS NOTIFY, see the description of the notify option in Sec-
tion 6.2 and the description of the zone option also-notify in Section 6.2. The NOTIFY protocol
is specified in REC 1996.

NOTE

As a slave zone can also be a master to other slaves, named, by default, sends NOTIFY
messages for every zone it loads. Specifying notify master-only; will cause named to only
send NOTIFY for master zones that it loads.

4.2 DYNAMIC UPDATE

Dynamic Update is a method for adding, replacing or deleting records in a master server by
sending it a special form of DNS messages. The format and meaning of these messages is
specified in RFC 2136.

Dynamic update is enabled by including an allow-update or an update-policy clause in the
zone statement.

If the zone’s update-policy is set to 1local, updates to the zone will be permitted for the key
local-ddns, which will be generated by named at startup. See Section 6.2 for more details.

Dynamic updates using Kerberos signed requests can be made using the TKEY /GSS protocol
by setting either the tkey-gssapi-keytab option, or alternatively by setting both the tkey-gssapi-
credential and tkey-domain options. Once enabled, Kerberos signed requests will be matched

15 BIND 9.9.9-P1

CHAPTER 4. ADVANCED DNS FEATURES 4.3. INCREMENTAL ZONE TRANSFERS. ..

against the update policies for the zone, using the Kerberos principal as the signer for the re-
quest.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: RRSIG, NSEC and NSEC3
records affected by updates are automatically regenerated by the server using an online zone
key. Update authorization is based on transaction signatures and an explicit server policy.

The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file
is automatically created by the server when the first dynamic update takes place. The name of
the journal file is formed by appending the extension . jnl to the name of the corresponding
zone file unless specifically overridden. The journal file is in a binary format and should not be
edited manually.

The server will also occasionally write ("dump") the complete contents of the updated zone to
its zone file. This is not done immediately after each dynamic update, because that would be
too slow when a large zone is updated frequently. Instead, the dump is delayed by up to 15
minutes, allowing additional updates to take place. During the dump process, transient files
will be created with the extensions . jnw and . jbk; under ordinary circumstances, these will
be removed when the dump is complete, and can be safely ignored.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate
into the zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journalled in a similar
way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guar-
anteed to contain the most recent dynamic changes --- those are only in the journal file. The
only way to ensure that the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work:
Disable dynamic updates to the zone using rndc freeze zone. This will update the zone’s master
file with the changes stored in its . jn1 file. Edit the zone file. Run rndc thaw zone to reload
the changed zone and re-enable dynamic updates.

rndc sync zone will update the zone file with changes from the journal file without stopping
dynamic updates; this may be useful for viewing the current zone state. To remove the . jnl
file after updating the zone file, use rndc sync -clean.

4.3 INCREMENTAL ZONE TRANSFERS (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed
data, instead of having to transfer the entire zone. The IXFR protocol is specified in RFC 1995.
See Proposed Standards.

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change
history information is available. These include master zones maintained by dynamic update
and slave zones whose data was obtained by IXFR. For manually maintained master zones,

BIND 9.9.9-P1 16

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

and for slave zones obtained by performing a full zone transfer (AXFR), IXFR is supported only
if the option ixfr-from-differences is set to yes.

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For
more information about disabling IXFR, see the description of the request-ixfr clause of the
server statement.

4.4 SpLIT DNS

Setting up different views, or visibility, of the DNS space to internal and external resolvers is
usually referred to as a Split DNS setup. There are several reasons an organization would want
to set up its DNS this way.

One common reason for setting up a DNS system this way is to hide "internal" DNS information
from "external" clients on the Internet. There is some debate as to whether or not this is actually
useful. Internal DNS information leaks out in many ways (via email headers, for example)
and most savvy "attackers" can find the information they need using other means. However,
since listing addresses of internal servers that external clients cannot possibly reach can result
in connection delays and other annoyances, an organization may choose to use a Split DNS to
present a consistent view of itself to the outside world.

Another common reason for setting up a Split DNS system is to allow internal networks that are
behind filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve
DNS on the Internet. Split DNS can also be used to allow mail from outside back in to the
internal network.

Example split DNS setup

Let’s say a company named Example, Inc. (example . com) has several corporate sites that have
an internal network with reserved Internet Protocol (IP) space and an external demilitarized
zone (DMZ), or "outside" section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange
mail with people on the outside. The company also wants its internal resolvers to have access
to certain internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of name servers. One set will
be on the inside network (in the reserved IP space) and the other set will be on bastion hosts,
which are "proxy" hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for sitel.internal,
site2.internal, sitel.example.com, and site2.example.com, to the servers in the
DMZ. These internal servers will have complete sets of information for sitel.example. com,
site2.example.com, sitel.internal,and site2.internal.

To protect the sitel.internal and site2.internal domains, the internal name servers
must be configured to disallow all queries to these domains from any external hosts, including
the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the "public”
version of the sitel and site2.example.com zones. This could include things such as

17 BIND 9.9.9-P1

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

the host records for public servers (www.example.com and ftp.example.com), and mail
exchange (MX) records (a.mx.example.comand b.mx.example. com).

In addition, the public sitel and site2.example.comzones should have special MX records
that contain wildcard (**’) records pointing to the bastion hosts. This is needed because external
mail servers do not have any other way of looking up how to deliver mail to those internal
hosts. With the wildcard records, the mail will be delivered to the bastion host, which can then
forward it on to internal hosts.

Here’s an example of a wildcard MX record:

* IN MX 10 externall.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will
need to know how to deliver mail to internal hosts. In order for this to work properly, the
resolvers on the bastion hosts will need to be configured to point to the internal name servers
for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external
hostnames will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only
the internal name servers for DNS queries. This could also be enforced via selective filtering on
the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:

* Look up any hostnames in the sitel and site2.example.com zones.
* Look up any hostnames in the sitel.internal and site2.internal domains.
* Look up any hostnames on the Internet.

¢ Exchange mail with both internal and external people.
Hosts on the Internet will be able to:

¢ Look up any hostnames in the sitel and site2.example.com zones.

* Exchange mail with anyone in the sitel and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only
configuration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

BIND 9.9.9-P1 18

CHAPTER 4. ADVANCED DNS FEATURES

4.4. SPLIT DNS

forward only;
// forward to external servers
forwarders {

bastion-ips—go-here;
}i
// sample allow-transfer (no one)
allow—-transfer { none; };
// restrict query access
allow—-query { internals; externals; };
// restrict recursion
allow-recursion { internals; };

i

// sample master zone

zone "sitel.example.com" {
type master;
file "m/sitel.example.com";

// do normal iterative resolution (do not forward)

forwarders { };
allow—query { internals; externals; };
allow-transfer { internals; };

}i

// sample slave zone
zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow—query { internals; externals; };
allow-transfer { internals; };
}i

zone "sitel.internal" {
type master;
file "m/sitel.internal";
forwarders { };
allow—-query { internals; };
allow-transfer { internals; }
}i

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }
}i

External (bastion host) DNS server config:

19

BIND 9.9.9-P1

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

// sample allow-transfer (no one)
allow-transfer { none; };

// default query access

allow-query { any; };

// restrict cache access

allow—query-cache { internals; externals; };
// restrict recursion

allow—-recursion { internals; externals; };

}i

// sample slave zone
zone "sitel.example.com" {
type master;
file "m/sitel.foo.com";
allow-transfer { internals; externals; };

}i

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-transfer { internals; externals; }

}i

In the resolv.conf (or equivalent) on the bastion host(s):

search

nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.5 TSIG

TSIG (Transaction SIGnatures) is a mechanism for authenticating DNS messages, originally
specified in RFC 2845. It allows DNS messages to be cryptographically signed using a shared
secret. TSIG can be used in any DNS transaction, as a way to restrict access to certain server
functions (e.g., recursive queries) to authorized clients when IP-based access control is insuffi-
cient or needs to be overridden, or as a way to ensure message authenticity when it is critical
to the integrity of the server, such as with dynamic UPDATE messages or zone transfers from a
master to a slave server.

BIND 9.9.9-P1 20

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

This is a guide to setting up TSIG in BIND. It describes the configuration syntax and the process
of creating TSIG keys.

named supports TSIG for server-to-server communication, and some of the tools included with
BIND support it for sending messages to named:

¢ nsupdate(1) supports TSIG via the -k, -1 and -y command line options, or via the key
command when running interactively.

¢ dig(1) supports TSIG via the ~k and -~y command line options.

Generating a Shared Key

TSIG keys can be generated using the ddns-confgen command; the output of the command
is a key directive suitable for inclusion in named.conf. The key name and algorithm can
be specified by command line parameters; the defaults are "ddns-key" and HMAC-SHA256,
respectively. By default, the output of ddns-confgen also includes additional configuration text
for setting up dynamic DNS in named; the —g suppresses this. See ddns-confgen(8) for further
details.

Any string which is a valid DNS name can be used as a key name. For example, a key to be
shared between servers called host1 and host2 could be called "host1-host2.", and this key could
be generated using:

$ ddns-confgen —-g -k hostl-host2. > hostl-host2.key

This key may then be copied to both hosts. The key name and secret must be identical on
both hosts. (Note: copying a shared secret from one server to another is beyond the scope of the
DNS. A secure transport mechanism should be used: secure FTP, SSL, ssh, telephone, encrypted
email, etc.)

Loading A New Key

For a key shared between servers called host1 and host2, the following could be added to each
server’s named. conf file:

key "hostl-host2." {

algorithm hmac-sha256;

secret "DAopyflmhCbFVZw7pgmNPBoLUg8wWEUT7UuPoLENP2HY=";
}i

(This is the same key generated above using ddns-confgen.)

Since this text contains a secret, it is recommended that either named.conf not be world-
readable, or that the key directive be stored in a file which is not world-readable, and which
is included in named. conf via the include directive.

Once a key has been added to named. conf and the server has been restarted or reconfigured,
the server can recognize the key. If the server receives a message signed by the key, it will be
able to verify the signature. If the signature is valid, the response will be signed using the same
key.

TSIG keys that are known to a server can be listed using the command rndc tsig-list.

21 BIND 9.9.9-P1

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

Instructing the Server to Use a Key

A server sending a request to another server must be told whether to use a key, and if so, which
key to use.

For example, a key may be specified for each server in the masters statement in the definition
of a slave zone; in this case, all SOA QUERY messages, NOTIFY messages, and zone transfer
requests (AXFR or IXFR) will be signed using the specified key. Keys may also be specified
in the also-notify statement of a master or slave zone, causing NOTIFY messages to be signed
using the specified key.

Keys can also be specified in a server directive. Adding the following on host1, if the IP address
of host2 is 10.1.2.3, would cause all requests from host1 to host2, including normal DNS queries,
to be signed using the host1-host2. key:

server 10.1.2.3 {
keys { hostl-host2. ;};
i

Multiple keys may be present in the keys statement, but only the first one is used. As this
directive does not contain secrets, it can be used in a world-readable file.

Requests sent by host2 to host1 would not be signed, unless a similar server directive were in
host2’s configuration file.

Whenever any server sends a TSIG-signed DNS request, it will expect the response to be signed
with the same key. If a response is not signed, or if the signature is not valid, the response will
be rejected.

TSIG-Based Access Control

TSIG keys may be specified in ACL definitions and ACL directives such as allow-query, allow-
transfer and allow-update. The above key would be denoted in an ACL element as key host1-
host2.

An example of an allow-update directive using a TSIG key:

allow-update { !{ !localnets; any; }; key hostl-host2. ;};

This allows dynamic updates to succeed only if the UPDATE request comes from an address in
localnets, and if it is signed using the hostl-host2. key.

See Section 6.2 for a discussion of the more flexible update-policy statement.

Errors

Processing of TSIG-signed messages can result in several errors:

¢ If a TSIG-aware server receives a message signed by an unknown key, the response will
be unsigned, with the TSIG extended error code set to BADKEY.

BIND 9.9.9-P1 22

CHAPTER 4. ADVANCED DNS FEATURES 4.6. TKEY

e Ifa TSIG-aware server receives a message from a known key but with an invalid signature,
the response will be unsigned, with the TSIG extended error code set to BADSIG.

e If a TSIG-aware server receives a message with a time outside of the allowed range, the
response will be signed, with the TSIG extended error code set to BADTIME, and the time
values will be adjusted so that the response can be successfully verified.

In all of the above cases, the server will return a response code of NOTAUTH (not authenti-
cated).

4.6 TKEY

TKEY (Transaction KEY) is a mechanism for automatically negotiating a shared secret between
two hosts, originally specified in REC 2930.

There are several TKEY "modes" that specify how a key is to be generated or assigned. BIND
9 implements only one of these modes: Diffie-Hellman key exchange. Both hosts are required
to have a KEY record with algorithm DH (though this record is not required to be present in a
zone).

The TKEY process is initiated by a client or server by sending a query of type TKEY to a TKEY-
aware server. The query must include an appropriate KEY record in the additional section, and
must be signed using either TSIG or SIG(0) with a previously established key. The server’s
response, if successful, will contain a TKEY record in its answer section. After this transac-
tion, both participants will have enough information to calculate a shared secret using Diffie-
Hellman key exchange. The shared secret can then be used by to sign subsequent transactions
between the two servers.

TSIG keys known by the server, including TKEY-negotiated keys, can be listed using rndc tsig-
list.

TKEY-negotiated keys can be deleted from a server using rndc tsig-delete. This can also be
done via the TKEY protocol itself, by sending an authenticated TKEY query specifying the "key
deletion" mode.

4.7 SIG(0)

BIND partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535 and
RFC 2931. SIG(0) uses public/private keys to authenticate messages. Access control is per-
formed in the same manner as TSIG keys; privileges can be granted or denied in ACL directives
based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and
trusted by the server. The server will not attempt to recursively fetch or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

The only tool shipped with BIND 9 that generates SIG(0) signed messages is nsupdate.

23 BIND 9.9.9-P1

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

4.8 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC-
bis) extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the cre-
ation and use of DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed.
BIND 9 ships with several tools that are used in this process, which are explained in more detail
below. In all cases, the ~h option prints a full list of parameters. Note that the DNSSEC tools
require the keyset files to be in the working directory or the directory specified by the ~d option,
and that the tools shipped with BIND 9.2.x and earlier are not compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to
transmit keys. A zone’s security status must be indicated by the parent zone for a DNSSEC
capable resolver to trust its data. This is done through the presence or absence of a DS record at
the delegation point.

For other servers to trust data in this zone, they must either be statically configured with this
zone’s zone key or the zone key of another zone above this one in the DNS tree.

Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records
in the zone, as well as the zone keys of any secure delegated zones. Zone keys must have
the same name as the zone, a name type of ZONE, and must be usable for authentication. It
is recommended that zone keys use a cryptographic algorithm designated as "mandatory to
implement" by the IETF; currently the only one is RSASHALT.

The following command will generate a 768-bit RSASHA1 key for the child.example zone:
dnssec-keygen —a RSASHAl -b 768 —-n ZONE child.example.

Two output files will be produced: Kchild.example.+005+12345.key and Kchild.example.
+005+12345.private (where 12345 is an example of a key tag). The key filenames contain
the key name (child.example.), algorithm (3 is DSA, 1 is RSAMDS5, 5 is RSASHAL1, etc.),
and the key tag (12345 in this case). The private key (in the . private file) is used to generate
signatures, and the public key (in the . key file) is used for signature verification.

To generate another key with the same properties (but with a different key tag), repeat the above
command.

The dnssec-keyfromlabel program is used to get a key pair from a crypto hardware and build
the key files. Its usage is similar to dnssec-keygen.

The public keys should be inserted into the zone file by including the .key files using $IN-
CLUDE statements.

Signing the Zone

The dnssec-signzone program is used to sign a zone.

BIND 9.9.9-P1 24

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

Any keyset files corresponding to secure subzones should be present. The zone signer will
generate NSEC, NSEC3 and RRSIG records for the zone, as well as DS for the child zones if ’ -
g’ is specified. If —g’ is not specified, then DS RRsets for the secure child zones need to be
added manually.

The following command signs the zone, assuming it is in a file called zone.child.example.
By default, all zone keys which have an available private key are used to generate signatures.

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be referenced
by named. conf as the input file for the zone.

dnssec-signzone will also produce a keyset and dsset files and optionally a dlvset file. These
are used to provide the parent zone administrators with the DNSKEYs (or their corresponding
DS records) that are the secure entry point to the zone.

Configuring Servers

To enable named to respond appropriately to DNS requests from DNSSEC aware clients, dnssec-
enable must be set to yes. (This is the default setting.)

To enable named to validate answers from other servers, the dnssec-enable option must be set
to yes, and the dnssec-validation options must be set to yes or auto.

If dnssec-validation is set to auto, then a default trust anchor for the DNS root zone will be
used. If it is set to yes, however, then at least one trust anchor must be configured with a
trusted-keys or managed-keys statement in named. conf, or DNSSEC validation will not oc-
cur. The default setting is yes.

trusted-keys are copies of DNSKEY RRs for zones that are used to form the first link in the
cryptographic chain of trust. All keys listed in trusted-keys (and corresponding zones) are
deemed to exist and only the listed keys will be used to validated the DNSKEY RRset that they
are from.

managed-keys are trusted keys which are automatically kept up to date via RFC 5011 trust
anchor maintenance.

trusted-keys and managed-keys are described in more detail later in this document.

Unlike BIND 8, BIND 9 does not verify signatures on load, so zone keys for authoritative zones
do not need to be specified in the configuration file.

After DNSSEC gets established, a typical DNSSEC configuration will look something like the
following. It has one or more public keys for the root. This allows answers from outside the
organization to be validated. It will also have several keys for parts of the namespace the or-
ganization controls. These are here to ensure that named is immune to compromises in the
DNSSEC components of the security of parent zones.

managed-keys {
/* Root Key =/
"." initial-key 257 3 3 "BNY4wrWMInCfJ+ <
CXd0rVXyYmobt 7sEEfK3clRbGaTwS
JxrGkxJWoZu6I7PzJu/ <
E9gx4UC1zGAHLXKJE4zYIpRh

25 BIND 9.9.9-P1

CHAPTER 4. ADVANCED DNS FEATURES

4.8. DNSSEC

}i

trusted-keys {

aBKnvcC2U9mzZhkdUpdlVso/ <+
HAdjNe8LmMlnzY3zy2Xy

4k 1WOADTPzSv9eamj8V18PHGjBLavVtYvk/ <

1In5ZApijYg

hf+6fElrmLkdaz MQ20CnACR817DF4BBa7UR/ <

beDHyp

5iWTXWSi6XmoJLbGIScqc7170KDGlvXR3M/

1UUVRbke

glIPJSidmK3ZyCl1lh4XSKbje/45 <«

SKucHgnwU5jefMtg
66gKodQj+ ¢

MiA21AfUVe7u99WzTLzY3glxDhxYQQ20FQ

97S+LKUTpQcg27RTAT3/

V5hROxScINgwcz4jYgZD2£Q

dgxbcDTCLlUOCRBdiieyLMNzXG3";

/* Key for our organization’s forward zone =/
example.com. 257 3 5 "AwEAAaxPMcR2x0HbQV4WeZB60oEDX+r0QM6
5KbhTjrWlZaARmPhEZZe3Y9ifgEuq7vz/z
GZUdEGNWy+JZzus01UptwgjGwhUS1558Hb
4JKUbbOTcM8pwX1jOEiX30DFVmjHO444gL
kBOUKUf /mC7HvEwYH/Be22GnClrinKJplO
g4ywzO9Wg1lMk7jbfW33gUKvirTHr25GL7S
TQUzBb5Usxt81lgnyTUHs1t3JwCY5S5hKZ6Cq
FxmAVZP20igTixin/l1LcrgX/KMEGd/biuv
F4qgJCyduieHukuY3H4XMACR+xia2nIUPvm
/OyWR8BW/hWdzOvnSCTh1Hf3xiY1leDbt /o
10TQ09A0=";

/* Key for our reverse zone.
257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc

2.0.192.IN-ADDRPA.NET.

bi
options {

dnssec—enable yes;
dnssec-validation yes;

x0dNax071L18QgZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6cOtszYgbtvchm
gQC8CzKojM/W16i6MG/eafGU3
51a0dS0yOI6BgPsw+YZdz1lYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB01C7a0OnsMyYKHHYeRvVPxj
IQXmdggOJGg+vsevG06zW+1xg
YJh9rCIfnmlGX/KMgxLPG2vXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk83/iI8ib";

BIND 9.9.9-P1

26

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND...

NOTE

None of the keys listed in this example are valid. In particular, the root key is not valid.

When DNSSEC validation is enabled and properly configured, the resolver will reject any an-
swers from signed, secure zones which fail to validate, and will return SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including missing, expired, or invalid
signatures, a key which does not match the DS RRset in the parent zone, or an insecure response
from a zone which, according to its parent, should have been secure.

NOTE

When the validator receives a response from an unsigned zone that has a signed parent,
it must confirm with the parent that the zone was intentionally left unsigned. It does this by
verifying, via signed and validated NSEC/NSECS3 records, that the parent zone contains no
DS records for the child.

If the validator can prove that the zone is insecure, then the response is accepted. However,
if it cannot, then it must assume an insecure response to be a forgery; it rejects the response
and logs an error.

The logged error reads "insecurity proof failed" and "got insecure response; parent indicates
it should be secure". (Prior to BIND 9.7, the logged error was "not insecure". This referred to
the zone, not the response.)

4.9 DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNING

As of BIND 9.7.0 it is possible to change a dynamic zone from insecure to signed and back again.
A secure zone can use either NSEC or NSEC3 chains.

Converting from insecure to secure

Changing a zone from insecure to secure can be done in two ways: using a dynamic DNS
update, or the auto-dnssec zone option.

For either method, you need to configure named so that it can see the K » files which contain the
public and private parts of the keys that will be used to sign the zone. These files will have been

27 BIND 9.9.9-P1

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND. ..

generated by dnssec-keygen. You can do this by placing them in the key-directory, as specified
in named. conf:

zone example.net {
type master;
update-policy local;
file "dynamic/example.net/example.net";
key-directory "dynamic/example.net";
}i

If one KSK and one ZSK DNSKEY key have been generated, this configuration will cause all

records in the zone to be signed with the ZSK, and the DNSKEY RRset to be signed with the
KSK as well. An NSEC chain will be generated as part of the initial signing process.

Dynamic DNS update method

To insert the keys via dynamic update:

o°

nsupdate
ttl 3600
update add example.net DNSKEY 256 3 7 <
AWEAAZNn17pUFO0KpbPA2c7Gz76Vbl18v0teKT3EYyAGEBfL8e0Q8al35zz3Y Ilm/ <
SAQBxIgMELt IwgWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwWEAAd/70dU/64 <+
02LGs1fbLtOmt O8dFDtTAZXSX2+X3e/UN1g9IHg3Y0 XtCOIuawl/ ¢
gkaKVxXe2lo8Ct+dM6UehyCgk=
> send

VvV Vv

While the update request will complete almost immediately, the zone will not be completely
signed until named has had time to walk the zone and generate the NSEC and RRSIG records.
The NSEC record at the apex will be added last, to signal that there is a complete NSEC chain.

If you wish to sign using NSEC3 instead of NSEC, you should add an NSEC3PARAM record to
the initial update request. If you wish the NSEC3 chain to have the OPTOUT bit set, set it in the
flags field of the NSEC3PARAM record.

nsupdate
ttl 3600
update add example.net DNSKEY 256 3 7 <
AWEAAZn17pUFO0KpbPA2c7Gz76Vb18v0teKT3EyAGEBEfL8eQ8al352z2z3Y Ilm/ <
SAQBxIgMELt IwgWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/70dU/64 <
02LGsifbLtQOmt O8dFDtTAZXSX2+X3e/UN1g9IHg3Y0 XtCOIuawl/ <
gkaKVxXe2lo8Ct+dM6UehyCgk=
> update add example.net NSEC3PARAM 1 1 100 1234567890
> send

o°

VvV Vv

Again, this update request will complete almost immediately; however, the record won’t show
up until named has had a chance to build /remove the relevant chain. A private type record will
be created to record the state of the operation (see below for more details), and will be removed
once the operation completes.

While the initial signing and NSEC/NSEC3 chain generation is happening, other updates are
possible as well.

BIND 9.9.9-P1 28

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND...

Fully automatic zone signing

To enable automatic signing, add the auto-dnssec option to the zone statement in named. conf.
auto-dnssec has two possible arguments: allow or maintain.

With auto-dnssec allow, named can search the key directory for keys matching the zone, insert
them into the zone, and use them to sign the zone. It will do so only when it receives an rndc
sign <zonename>.

auto-dnssec maintain inc